

1-Channel Automotive LED Driver

H-Bridge 1.5 A, 60 V - TSSOP16-EP

NCV78514

The NCV78514 is a part of the **onsemi** LED driver solution family for the automotive market. It's main emphasis is on supporting MCU less applications by integrating smart features like derating based on input voltage and temperature of the LED string. The device is optimized for a one channel LED driver unit and is based on a H Bridge topology with a synchronous Buck switches and asynchronous Boost with external low side NMOSFET and Schottky diode. Supplying in a constant current mode a single LED string between 2 and 20 LEDs.

This enables the design of a single PCB design solution or with a separate module approach.

The LED string current is set with a current encoding resistor. The actual current through the LED string is sensed with a sense resistor.

Features

Support for MCU Less Application

Integrated Derating Mechanisms

Fixed Switching Frequency at 400 kHz

Input Operating Range from 5 V – 21 V

Warm Start Management below 9 V

Withstands Load Dump up to 45 V

Output Voltage Range up to 60 V

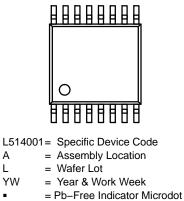
External Programmable Current 200 mA 1500 mA

Pulse Width Modulation from 80 Hz to 600 Hz $\,$

LED Current Dimming Frequency 400 Hz

External NTC / PTC for LED temperature

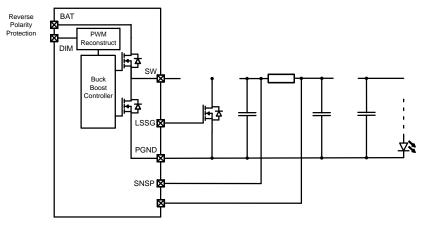
Spread Spectrum


Status and Error Mode Handling

AEC Q100 Qualified and PPAP Capable

Input EMC/EMI

Filter


ORDERING INFORMATION

Device	Package	Shipping [†]
NCV78514PA0R20	TSSOP16-EP (Pb-Free)	4000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Typical Application

Fog Lamp Cornering Light Logo Projection Logo Lighting

FUNCTIONAL BLOCK DIAGRAM

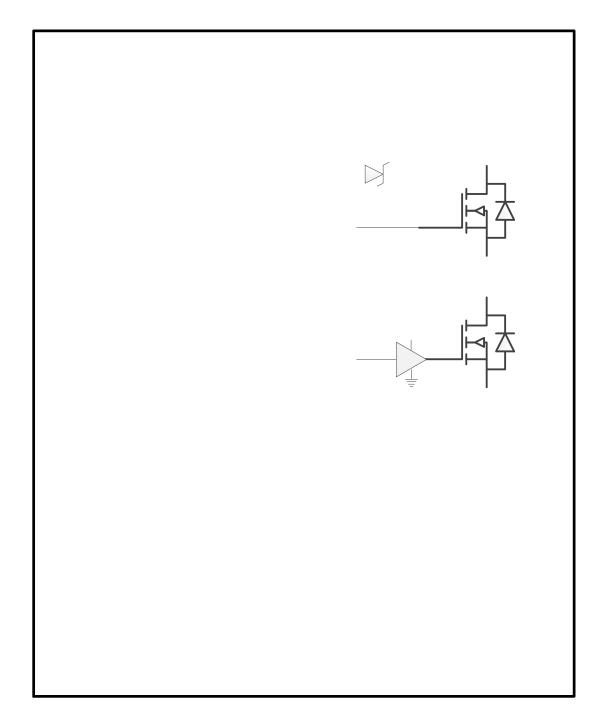


Figure 2. Block Diagram

PIN OUT DESCRIPTION

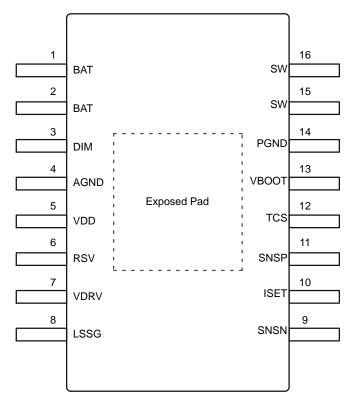


Figure 3. Pin Out (Top View)

Table 1. PIN FUNCTION DESCRIPTION

Number	Name	Description
1, 2	BAT	Input supply voltage, coming from the Battery or ECU, through reverse blocking protection and input Pi filter. Pin 1 and pin 2 must be connected together.
3	DIM	Enable/disable function, including LED current dimming function and error status function.
4	AGND	Must be connected directly to the analog ground plane.
5	VDD	3V3 low dropout output pin. A capacitor must be connected between this pin and ground. Must not be used for external load.
6	RSV	Reserved for production test. Must be connected directly to the analog ground plane in the application.
7	VDRV	-

MAXIMUM RATINGS

Pin voltages listed below are referenced to ground plane.

Table 2. MAXIMUM RATINGS

Symbol	Parameter description	Min	Мах	Unit
AM_BAT	BAT pin. Main Power Input.	-0.3	45	V
AM_DIM	DIM pin. Signal Input	-20	45	V
AM_RSV	RSV pin Signal Input.	-0.3	3.6	V
AM_VDD	VDD pin. Local Power Supply Output	-0.3	3.6	V
AM_ISET	ISET pin. Signal Input	-0.3	70	V
AM_TCS	TCS pin. Signal Input	-0.3	70	V
AM_VDRV	VDRV pin. Power Output	-0.3	5.5	V
AM_LSSG	LSSG pin. Power Output	-0.3	5.5	V
AM_SW	SW pin. Power Output	-0.3	45	V
AM_VBOOT	VBOOT pin, referring to ground. Power Input	Max of (V _{SW} -0.3,-0.3)	V _{SW} +3.6	V
AM_SNSP	SNSP pin. Signal Input	-0.3	70	V
AM_SNSN	SNSN pin. Signal Input	-0.3	70	V
AM_TS	Storage Temperature Range	-55	150	С
AM_TJ	Maximum Junction Temperature (Note 1)	-40	P_TJ_OFF	С
EOS_HBM	ESD Withstand Voltage (Human Body Model)	2		kV
EOS_CDM_CORNER	ESD Withstand Voltage (CDM). BAT, SW, LSSG, SNSN	750		V
EOS_CDM	ESD Withstand Voltage (CDM), all other pins than corners	500		V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. The maximum functional operating temperature range can be limited by the IC thermal shutdown: P_TJ_OFF.

RECOMMENDED OPERATING CONDITIONS

Operating ranges define the limits for functional operation and parametric characteristics of the device. Note that the functionality outside the operating ranges described in this section is not warranted. Operating outside the recommended operating ranges for extended periods of time may lead to a not functional device or affect device reliability. A mission profile is a substantial part of the operation conditions; hence the Customer must contact **onsemi** in order to mutually agree in writing on the allowed missions profile(s) in the application.

Symbol	Parameter Description	Min	Мах	Unit
P_BAT_OP	BAT Range – Operating	P_UVLO_operating	P_OVLO_operating	V
P_BAT_MAX	BAT Range – Full Power	9	P_OVLO_operating	V
P_VOUT	DC to DC VOUT Range	5.6	60	V
P_TA	IC Ambient Temperature Range	-40	125	С
P_TJ	IC Junction Temperature Range (Notes 2 and 3)	-40	150	С
P_OUTPUT_POWER	Output Power		20	W
P_IC_POWER	On-chip Power Dissipation with the recommended heatsink performance		2	W

Table 3. RECOMMENDED OPERATING CONDITIONS

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 4. THERMAL INFORMATION (Note 4)

Symbol	Parameter Description	Min	Тур	Max	Unit	Notes
RTHETA_JC	Junction to exposed pad thermal resistance		3.2		C/W	

4. Includes also typical solder thickness under the Exposed Pad (EP).

ELECTRICAL CHARACTERISTICS

In the electrical table of this section, the Min and Max Limits apply for ambient temperature from 40 C to 125 C

and junction temperature from ~~40 C to +150 C and for VBAT from 5 V to

Symbol	Parameter Description	Min	Тур	Max	Unit	Notes
P_SWITCH_FREQ	DC to DC switching frequency		400	440	kHz	
P_FSSMB	Spread Spectrum Modulation Bandwidth, of the SWITCH_FREQ		6	10	%	
P_FSSMF	Spread Spectrum Modulation Frequency	11.97	13.3	14.65	kHz	
P_ILED_MAX	P_ILED_MAX Maximum output current – RSET= 715 Ω – no dimming – no derating		1.5	1.575	A	
P_ILED_MIN	$ MIN \qquad \qquad \text{Minimum output current} - RSET= 10 \text{ k}\Omega - \text{no} \\ \text{dimming} - \text{no derating} $		0.2	0.22	A	
P_ILEDCLAMP	LED Current de-rating minimum value in case of derating, plateau option 50%		100		mA	
P_ILED_ACCURACY_200	ILED accuracy for a 200 mA programmed current – no dimming (RSET = 10 k Ω)	-10		+10	%	

Table 7. DC-DC CONVERTER TABLE (continued)

Unit

С

С С

С

%

ms

%

60

20

1.3

2.5

Notes

Table 11. IC THERMAL THRESHOLDS TABLE							
Symbol	Parameter Description	Min	Тур	Max			
P_TJWARN	Warning threshold for a LED Current de-rating starting value		130				
P_TJ_HYST	Rearming threshold after a direct TSD (no derating)		135				
P_TJ_REG	LED Current de-rating end value (ILED = P_ILED_TJILED over this threshold)		150				
P_TJ_OFF	Protection for the maximum Junction Temperature.		170				

End de-rating output current ratio, percentage of

Response time + timer, falling for rearming

Step to Step Current De-rating ratio

DC to DC is turned off over this value.

P_ILED_TJ

P_TJ_FALL

P_ILED_TJ_STEP

Table 12. THERMAL COEFFICIENT SENSOR PIN TABLES

the ISET

Symbol	Parameter	Min	Тур	Мах	Unit	Notes
P_VTCS _{START}	Resputingestuert voltage on TCS		0.167		* Vvdd	
P_VTCS						· · ·

Digital Dimming

A first dimming functionality is achieved by applying a square input signal on the DIM pin.

The input duty cycle range is valid in the DIM_DC_IN range and is reconstructed on the output with an identical duty cycle (DIM_DC_OUT).

A duty cycle above 98% is considered as a 100 % duty cycle. The current into the LEDs is then no more dimmed, and set to the DC current, programmed by RSET.

As soon as the part achieves 100 % duty cycle, the part enters in automatic mode.

At start up, the NCV78514 starts after the second identified valid duty cycle.

A duty cycle change, to a higher or lower value, makes a linear change of the LED current. The time to reach new current is proportional to difference of new and previous duty cycle and is described below.

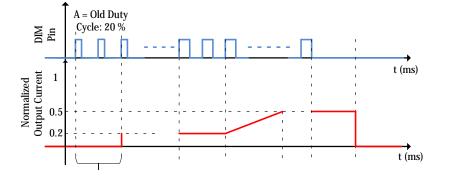
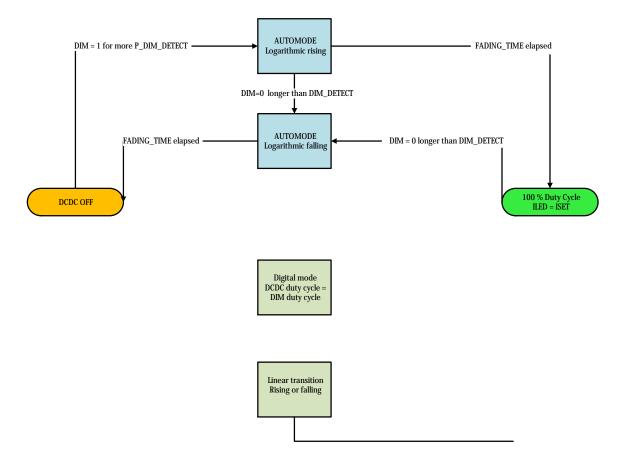
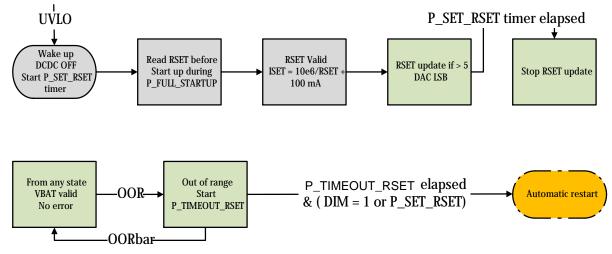
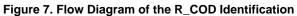





Figure 4. ILED Setting Slope in Digital Dimming Mode

LED CURRENT DERATING MANAGEMENT

To limit overheating of the IC an ILED current de

When VBAT falls under P_BAT_LOW, ILED is derated following the formula with a minimum of P_ILED_CLAMP value:

$$\mathsf{ILED} = \mathsf{ISET} \times \frac{(\mathsf{BAT}+1)}{10} \qquad (\mathsf{eq.}\ 2)$$

IC Temperature Monitoring

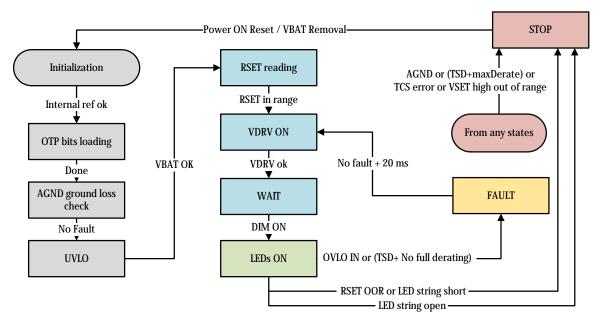
The junction temperature of the IC is monitored thanks to an internal thermometer.

In the situation where the junction temperature exceeds gradually the P_TJWARN, a current de rating is immediately applied to the LED current, with a controlled slope upon P_DTC_BAT timing.

If the junction temperature continues to increase and crosses the P_TJ_REG threshold, the LED current is maintained around P_ILED_TJ.

If the IC temperature exceeds the P_TJ_OFF, the current into the LED is stopped, and an error is reported on DIM pin. A power on reset is required to reset the error.

In case of a very fast temperature increase (no derating is engaged) and P_TJ_OFF is crossed, the LED string will be rearmed when the junction temperature falls below the P_TJ_HYST threshold, and the error reporting on DIM pin is stopped.


Table 14. ILED DERATING SUMMARY TABLE

ILED Derating List

Reset

DIM Current Sink

MAIN FUNCTIONAL STATE MACHINE

COMPONENT LEVEL ELECTROMAGNETIC COMPATIBILITY (EMC)

EMC is a critical item in automotive systems. **onsemi** commits to cooperate technically with the customer to target to build an integrated circuit which is sufficiently EMC

Application level EMC performance will depend on the use of the IC (ASIC) component in an application environment:

The influence of the application environment is typically caused by or related to (but not limited to) the board

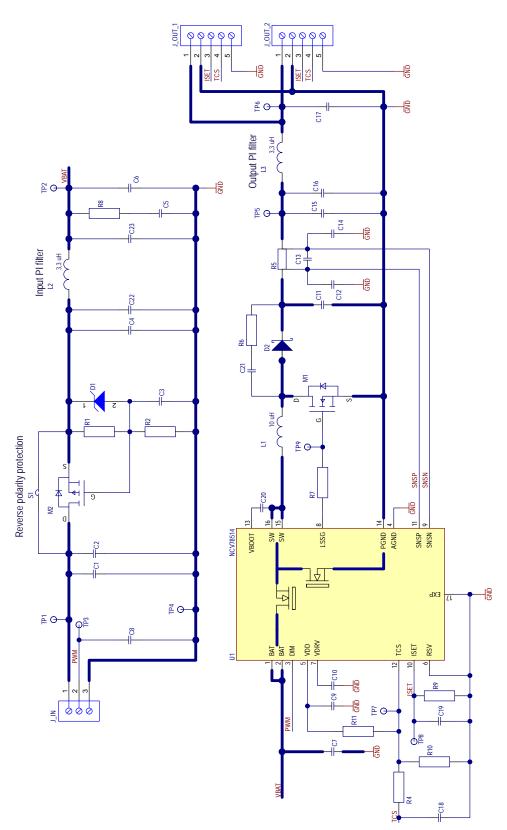
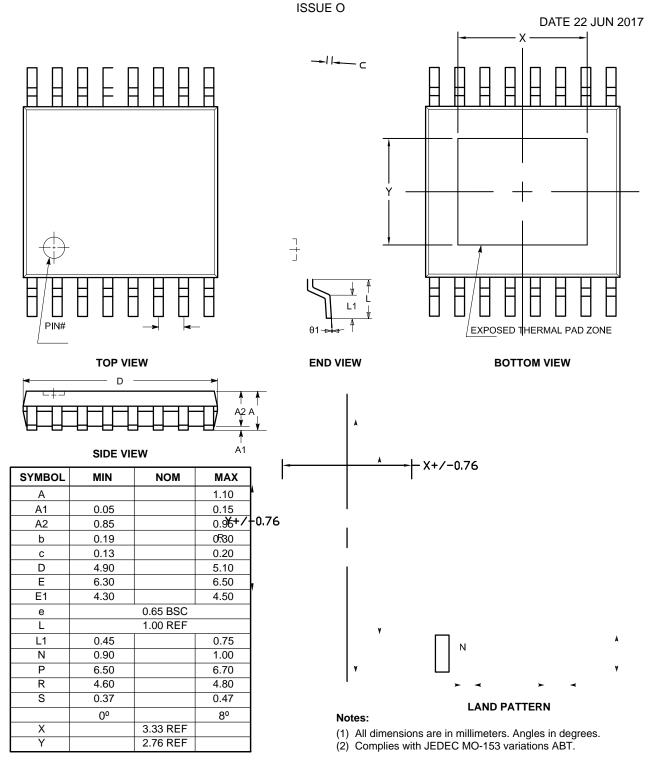


Figure 14. Application Board Schematic


Table 17. BILL OF MATERIAL

Reference	Manufacturer	Manufacturer Reference	Value
C1	Murata	GCJ188R72A104KA01D	100 nF
C2	Murata	GCM32EL8EH106KA07	10 μF
C3	Murata	GCJ188R72A104KA01D	100 nF
C4	Murata	GCM32EL8EH106KA07	10 μF
C5	Murata	GCM32EL8EH106KA07	10 μF
C6	Murata	GCM32EL8EH106KA07	10 μF
C7	Murata	GCJ32DC72A475KE01L	4.7 μF
C8	Murata	GCM21BC72A105KE36L	1 μF
C9	Murata	GCM21BR71C475KA73L	4.7 μF
C10	Murata	GCM21BR71C475KA73L	4.7 μF
C11	Murata	GCJ32DC72A475KE01L	4.7 μF
C12	Murata	GCJ188R72A104KA01D	100 nF
C13	Murata	GCJ188R72A104KA01D	100 nF
C14	Murata	GCJ188R72A104KA01D	100 nF
C15	Murata	GCJ32DC72A475KE01L	4.7 μF
C16	Murata	GCJ32DC72A475KE01L	4.7 μF
C17	Murata	GCM21BC72A105KE36L	1 μF
C18	Murata	GCJ188R72A104KA01D	100 nF
C19	Murata	GCJ188R72A104KA01D	100 nF
C20	Murata	GCJ188R72A104KA01D	100 nF
C21	Murata	GCJ188R72A102KA01	1 nF
C22	Murata	GCJ188R72A104KA01D	100 nF
C23	Murata	GCJ188R72A104KA01D	100 nF
D1	onsemi	MM5Z20VT1	MM5Z15VT1G
D2	onsemi	NRVTS8100PFST3G	NRVTS8100PFST30
M2	onsemi	NVTFS5116PLT	NVTFS5116PLTWG
U1	onsemi	NCV78514	NCV78514
M1	onsemi	NVTFS6H860NL	NVTFS6H860NL
L1	TDK	SPM7054VT – 100M–D	10 μH
L2	TDK	SPM4030VT-3R3-D	3.3 μH
L3	TDK	SPM4030VT-3R3-D	3.3 μH
R1	Vishay	MCT06030C2002FP5	20 kΩ
R2	Vishay	MCT06030C1002FP5	10 kΩ
R4	Vishay	MCT06030Z0000ZP5	0R – Optional
R5	Susumu	RL1632R-R100-F	R100
R6	Vishay	MCT0603PD1009DP5	100R – Optional
R7	Vishay	MCT06030Z0000ZP5	0R – Optional
R8	Vishay	MCT06030Z0000ZP5	0R – Optional
R9	Vishay	MCT06030Z0000ZP5	0R – Module Option
R10	Vishay	MCT06030Z0000ZP5	0R – NTC/PTC
R11	Vishay	MCT06030Z0000ZP5	0R – NTC/PTC
J_IN	Wurth	691709710303	Wurth Header 3
J_OUT_1	Molex	502352-0500	Molex Header 5
J_OUT_2	Wurth	691709710305	Wurth Header 5

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

TSSOP16, 4.4x5 EXPOSED PAD CASE 948BV

TM

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi