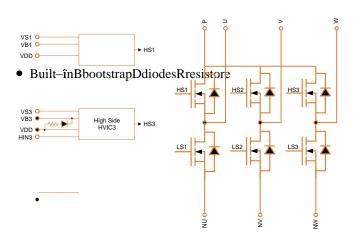
Isemi

.

Inverter, 1200 V, 40 A


General Description

The NFAM5312SCBUT is a fully-integrated inverter power module consisting of an independent High side gate driver, LVIC, six SiC MOSFET's and a temperature sensor (VTS or Thermistor), suitable for driving permanent magnet synchronous (PMSM) motors, brushless DC (BLDC) motors and AC asynchronous motors. The MOSFET's are configured in a three-phase bridge with separate source connections for the lower legs for maximum flexibility in the choice of control algorithm.

The power stage has undervoltage lockout protection (UVP). Internal bootstrap diodes/resistors are provided for high side control.

Features

- 1200 V 40 A 3-Phase MOSFET Inverter, Including Control ICs for Gate Drive and Protections
- Active Logic Interface
- Built-in Under Tc@0efF/TMT6TTAt9 0 TD-004 Tc(in Under Tc@0efF/TMT6TTAt9 Control ICse1rest)e

MARKING DIAGRAM

© Semiconductor Components Industries, LLC, 2025 February, 2025 - Rev. 0

•

PIN DESCRIPTION

Pin	Name	Description		
1	VS(U)	High–Side Bias Voltage Ground for U–Phase MOSFET Driving		
(2)	-	Dummy		
3	VB(U)	High–Side floating supply voltage for U–Phase MOSFET Driving		
4	VDD(UH)	High–Side control power supply for U–Phase IC		
(5)	-	Dummy		
6	HIN(U)	Signal Input for High–Side U–Phase		
7	VS(V)	High–Side Bias Voltage Ground for V–Phase MOSFET Driving		
(8)	-	Dummy		
9	VB(V)	High–Side floating supply voltage for V–Phase MOSFET Driving		
10	VDD(VH)	High–Side control power supply for V–Phase IC		
(11)	-	Dummy		
12	HIN(V)	Signal Input for High–Side V–Phase		
13	VS(W)	High–Side Bias Voltage Ground for W–Phase MOSFET Driving		
(14)	-	Dummy		
15	VB(W)	High–Side floating supply voltage for W–Phase MOSFET Driving		
16	VDD(WH)	High–Side control power supply for W–Phase IC		
(17)	-	Dummy		
18	HIN(W)	Signal Input for High-Side W-Phase		
(19)	-	Dummy		
20	VTS	Output for LVIC Temperature Sensing Voltage		
21	LIN(U)	Signal Input for Low-Side U-Phase		
22	LIN(V)	Signal Input for Low–Side V–Phase		
23	LIN(W)	Signal Input for Low–Side W–Phase		
24	VFO	Fault Output		
25	CFOD	Capacitor for Fault Output Duration Selection		
26	CIN	Input for Current Protection		
27	VSS	Low-Side Common Supply Ground		
28	VDD(L)	Low-Side Bias Voltage for IC and MOSFETs Driving		
(29)	-	Dummy		
(30)	-	Dummy		
31	NW	Negative DC-Link Input for W-Phase		
32	NV	Negative DC-Link Input for V-Phase		
33	NU	Negative DC-Link Input for U-Phase		
34	W	Output for W-Phase		
35	V	Output for V–Phase		
36	U	Output for U-Phase		
37	Р	Positive DC-Link Input		
38	TH1	Thermistor connection (T) / No connection		
39	TH2	Thermistor connection *optional for T		

NOTE: Pins of () are the dummy for internal connection. These pins should be no connection.

INTERNAL EQUIVALENT CIRCUIT AND INPUT/OUTPUT PINS

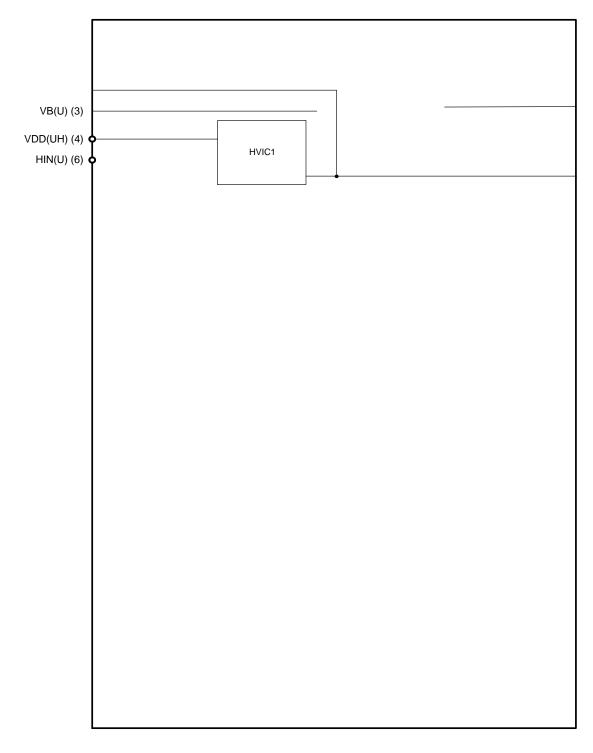


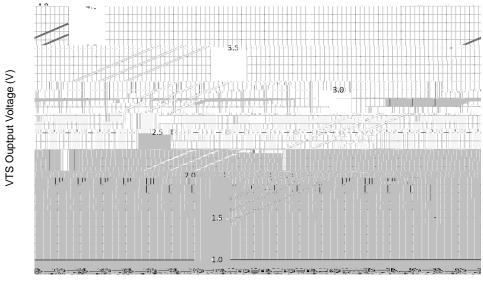
Figure 3. Internal Block Diagram

ELECTRICAL CHARACTERISTICS (Tc = 25°C, VDD = 18 V, VBS = 18 V, unless otherwise noted) (Notes 8, 9)

Symbol	Description	Conditions		Min	Тур	Max	Unit	
INVERTER PART	INVERTER PART							
IDSS Drain – Source Leakage Current		VDS = 1200 V, Tj = 25°C		-	-	1	mA	
		VDS = 1200 V, Tj = 150°C		-	-	10	mA	
RDS(ON) Drain to Source		ID = 40 A, VDD = VBS = 18 V, Tj = 25°C		-	53	72	mΩ	
	On Resistance	ID = 40 A, VDD = VBS = 18 V, Tj = 150°C		-	97	-	mΩ	
VSD	Diode Forward Voltage	VDD = VBS = 18 V, ISD = 40 A, Tj = 25°C	HIN/LIN = OFF	-	4.80	5.50	V	
			HIN/LIN = ON	-	1.70	2.35	V	
		VDD = VBS = 18 V, HIN/LIN = ON,	HIN/LIN = OFF	I	5.15	-	V	
		ISD = 40 A, Tj = 150°C	HIN/LIN = ON	-	3.10	-	V	

ELECTRICAL CHARACTERISTICS (Tc = 25°C, VDD = 18 V, VBS = 18 V, unless otherwise noted) (Notes 8, 9)

Symbol	Description	Conditions	Min	Тур	Max	Unit
CONTROL PART						
UVBSD	Supply Circuit Under-	VBS supply undervoltage negative going input threshold	10.0	-	12.0	V
UVBSR	Voltage Protection	VBS supply undervoltage positive going input threshold	10.5	-	12.5	V
VTS	Voltage Output for LVIC Temperature Sensing Unit	Pull down R = 5.1 k Ω , Temp. = 85°C	2.50	2.63	2.76	V
VFOH	Fault Output Voltage	VDD(L) = 0 V, CIN = 0 V, VFO Circuit: 10 k Ω to 5 V Pull-up	4.9	-	-	V
VFOL		VDD(L) = 0 V, CIN = 1 V, VFO Circuit: 10 k Ω to 5 V Pull-up	-	-	0.95	V
tFOD	Fault-Out Pulse Width	CFOD = 22 nF (Note 6)	1.6	2.2	_	ms


BOOTSTRAP PART

VF BD	Bootstrap Diode Forward Current	If = 0.1 A (See Figure 7)		2.1	2.5	2.9	V
R BOOT	Built-in Limiting Resistance		12.5	15.5	18.5	Ω	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTES: Performance guaranteed over the indicated operating temperature range by design and/or characterization tested at Tj = Ta = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible. Values based on design and/or characterization.

4. ton and toff include the propagation delay of the internal drive IC. tc(on) and tc(off) are the switching times of MOSFET under the given gate-driving condition internally. For the detailed information, please see Figure 4.

LVIC Temperature (°C)

Figure 5. Temperature of LVIC versus VTS Characteristics

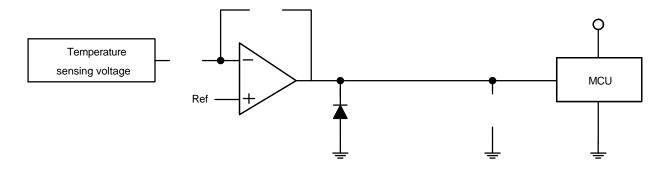
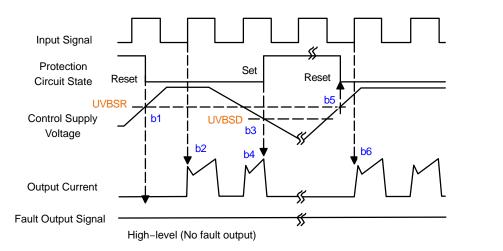


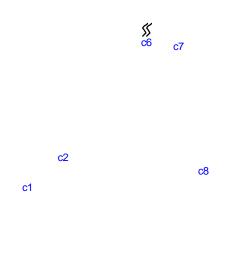
Figure 6. Internal Block Diagram and Interface Circuit of VTS


Parameter	Symbol	Condition	Min	Тур	Мах	Unit
Resistance	R ₂₅	Tc = 25°C	46.530	47	47.47	kΩ
Resistance	R ₁₂₅	Tc = 100°C	1.344	1.406	1.471	kΩ

THERMISTOR CHARACTERISTICS (Included only in NFAM5312SCBUT)

RECOMMENDED OPERATING CONDITIONS

Symbol	Rating	Conditions	Min	Тур	Max	Unit
VPN	Supply Voltage	Applied between P – NU, NV, NW	-	600	800	V
VDD	Control Supply Voltage	Applied between VDD(H) – VSS, VDD(L) – VSS	13.0	18.0	19.0	V
VBS	High-Side Bias Voltages	Applied between VB(U) – VS(U), VB(V) – VS(V), VB(W) – VS(W)	13.5	18.0	19.5	V


dVDD / dt dVBSt

Inpu3

- b1 : Control supply voltage rises: After the voltage reaches UVBSR, the circuits start to operate when next input is applied. b2 : Normal operation: MOSFET ON and carrying current.
- b3 : Under voltage detection (UVBSD).
- b4 : MOSFET OFF in spite of control input condition, but there is no fault output signal.
- b5 : Under voltage reset (UVBSR).
- b6 : Normal operation: MOSFET ON and carrying current by triggering next signal from LOW to HIGH.

(with the external sense resistance and RC filter connection)

- c1 : Normal operation: MOSFET ON and carrying current.
- c2 : Short circuit current detection (SC trigger).
- c3 : All low-side MOSFET's gate are hard interrupted.

c4 : All low-side MOSFET's turn OFF.

- c5 : Fault output operation starts with a fixed pulse width.
- c6 : Input HIGH: MOSFET ON state, but during the active period of fault output the MOSFET doesn't turn ON. c7 : Fault output operation finishes, but MOSFET doesn't turn on until triggering next signal from LOW to HIGH.

c8 : Normal operation: MOSFET ON and carrying current.

Figure 11. Short-Circuit Current Protection (Low-Side Operation only)

TYPICAL APPLICATION CIRCUIT

TURN-ON/OFF SWITCHING WAVEFORM

Switching Condition: VPN = 600 V, VDD = 18 V, Tj = 25° C, Id = 40 A.

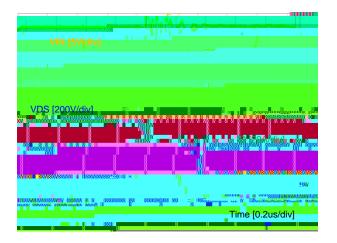


Figure 25. Turn-on Switching Waveform

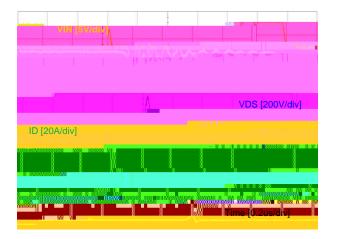


Figure 26. Turn-off Switching Waveform

Switching Condition: VPN = 600 V, VDD = 18 V, Tj = 150° C, Id = 40 A.

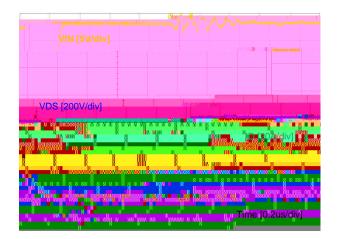


Figure 27. Turn-on Switching Waveform

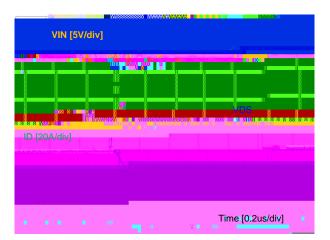
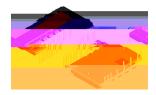
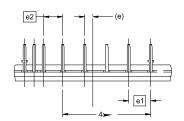




Figure 28. Turn-off Switching Waveform

DIP39, 54.50x31.00x5.60, 1.78P CASE MODGC ISSUE B

DATE 21 DEC 2023

GENERIC MARKING DIAGRAM* °

ZZZATY	WW 2D
	CODE
XXXXX = Specific	
ZZZ = Assembl	y Lot Code

- AT = Assembly & Test Location
- Y = Year
- WW = Work Week
- *This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi