# Ambient Light Sensor with I<sup>2</sup>C Interface

# Description

The NOA1302 integrates a wide dynamic range ambient light sensor (ALS) with a 16 bit ADC and a 2 wire I<sup>2</sup>C digital interface. The NOA1302 ambient light sensor provides a linear response over the range of close to 0 lux to well over 100,000 lux with programmable integration times to optimize noise performance. The sensor employs proprietary CMOS image sensing technology from ON Semiconductor which provides low noise and high dynamic range output signals and light response similar to the response of the human eye.

The NOA1302 operates as an  $I^2C$  slave device and supports commands to set options in the device and read out the ambient light intensity count.

# Features

- Senses Ambient Light and Provides an Output Count Proportional to the Ambient Light Intensity
- Human Eye Type of Spectral Response
- Provides Comfortable Levels of Display Depending on the Viewing Environment

#### Table 1. ORDERING INFORMATION

| Part Number | Package               | Shipping Configuration <sup>†</sup> | Temperature Range |
|-------------|-----------------------|-------------------------------------|-------------------|
| NOA1302DCRG | CTSSOP-8<br>(Pb-Free) | 2500 / Tape & Reel                  | 0°C to 70°C       |

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

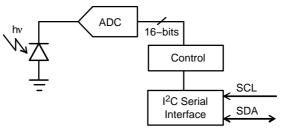



Figure 2. Simplified Block Diagram

#### **Table 2. PIN FUNCTION DESCRIPTION**

| Pin        | Pin Name | Description                                                                                        |  |  |
|------------|----------|----------------------------------------------------------------------------------------------------|--|--|
| 1, 2, 7, 8 | N/C      | Not connected, leave this pin unconnected.                                                         |  |  |
| 3          | VSS      | Ground pin.                                                                                        |  |  |
| 4          | SCL      | External I <sup>2</sup> C clock supplied by the I <sup>2</sup> C master.                           |  |  |
| 5          | SDA      | Bi–directional data signal for communications between this device and the I <sup>2</sup> C master. |  |  |
| 6          | VDD      | Power pin.                                                                                         |  |  |

#### Table 3. ABSOLUTE MAXIMUM RATINGS

| Rating                                                                                                                               | Symbol                                                        | Value             | Unit         |
|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------|--------------|
| Input power supply                                                                                                                   | VDD                                                           | 5.5               | V            |
| Input voltage range                                                                                                                  | V <sub>in</sub>                                               | -0.3 to VDD + 0.2 | V            |
| Output voltage range                                                                                                                 | V <sub>out</sub>                                              | -0.3 to VDD + 0.2 | V            |
| Maximum Junction Temperature                                                                                                         | T <sub>J(max)</sub>                                           | 85                | °C           |
| Storage Temperature                                                                                                                  | T <sub>STG</sub>                                              | -40 to 85         | °C           |
| ESD Capability, Human Body Model (Note 1)<br>ESD Capability, Charged Device Model (Note 1)<br>ESD Capability, Machine Model (Note 1) | ESD <sub>HBM</sub><br>ESD <sub>CDM</sub><br>ESD <sub>MM</sub> | 2.5<br>750<br>250 | kV<br>V<br>V |
| Moisture Sensitivity Level                                                                                                           | MSL                                                           | 3                 | -            |
| Lead Temperature Soldering (Note 2)                                                                                                  | T <sub>SLD</sub>                                              | 260               | °C           |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. This device incorporates ESD protection and is tested by the following methods:

ESD Human Body Model tested per EIA/JESD22-A114

ESD Charged Device Model tested per ESD-STM5.3.1-1999

- ESD Machine Model tested per EIA/JESD22-A115
- Latchup Current Maximum Rating: ≤ 100 mA per JEDEC standard: JESD78

2. For information, please refer to our Soldering and Mounting Techniques Reference Manual, SOLDERRM/D

# Table 4. OPERATING RANGES

|                                    |        | Standard Mode |     | Fast Mode |     |      |
|------------------------------------|--------|---------------|-----|-----------|-----|------|
| Rating                             | Symbol | Min           | Max | Min       | Max | Unit |
| Power supply voltage               | VDD    | 3.0           | 3.6 | 3.0       | 3.6 | V    |
| Power supply current (VDD = 3.3 V) | IDD    | 325           | 950 | 325       | 950 | μΑ   |

| Parameter                | Test Conditions                                            | Symbol         | Min | Тур  | Max | Unit   |
|--------------------------|------------------------------------------------------------|----------------|-----|------|-----|--------|
| Irradiance responsivity  | λp (see Figure 5)                                          | R <sub>e</sub> |     | 545  |     | nM     |
| Illuminance responsivity | Incandescent light source:<br>Ev = 100 lux (see Figure 6)  | R <sub>v</sub> |     | 150  |     | Counts |
|                          | Incandescent light source:<br>Ev = 1000 lux (see Figure 6) |                |     | 1480 |     |        |
| Illuminance responsivity | Fluorescent light source:<br>Ev = 100 lux (see Figure 7)   | R <sub>v</sub> |     | 130  |     | Counts |
|                          | Fluorescent light source:<br>Ev = 1000 lux (see Figure 7)  |                |     | 1290 |     |        |
| Dark current             | Ev = 0 lux (see Figure 9)                                  |                |     | 2    |     | Counts |

**Table 6. OPTICAL CHARACTERISTICS** (Unless otherwise specified, these specifications are for VDD = 3.3 V,  $T_A = 25^{\circ}C$ )

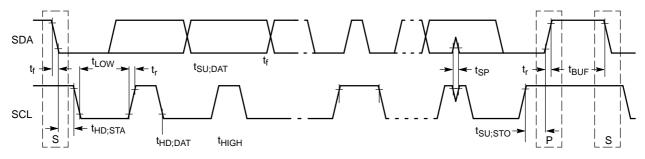



Figure 3. AC Characteristics

# **TYPICAL CHARACTERISTICS**

Photo diode spectral response (wo/Eilter)



#### Figure 4. Photo Diode Spectral Response (Without Filter)

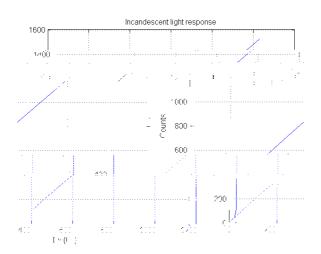



Figure 6. Incandescent Light Response (200 ms Integration)

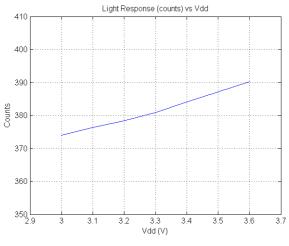
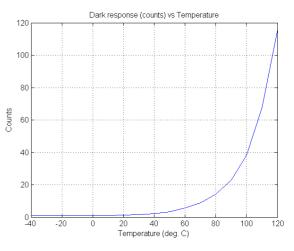
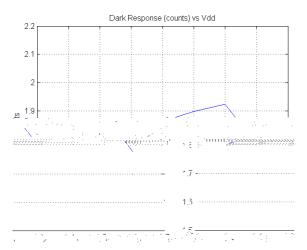
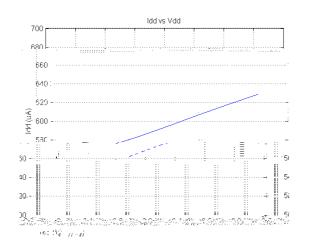


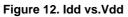

Figure 8. Light Response vs. VDD

Figure 5. Human Eye vs. NOA1302 Spectral Response



Figure 7. Fluorescent Light Response (200 ms Integration)



Figure 9. Dark Counts vs. Temperature (200 ms Integration)

# **TYPICAL CHARACTERISTICS**









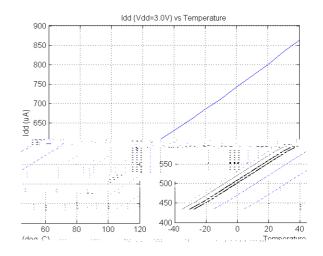



Figure 11. Idd vs. Temperature

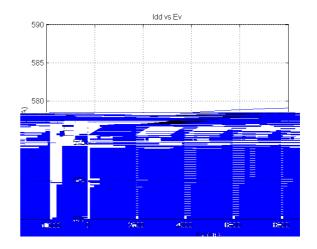



Figure 13. Idd vs Ev

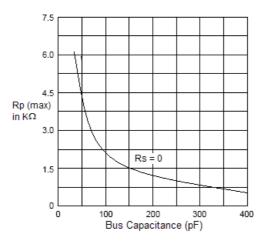



Figure 14. Maximum Value of  $R_P \ \mbox{(in } k\Omega)$  as a function of Bus Capacitance (in pF)

# **DESCRIPTION OF OPERATION**

Ambient Light Sensor Architecture The NOA1302 employs a sensitive photo diode fabricated

| EC[2,1,0] | Operation                     | Integration Time |
|-----------|-------------------------------|------------------|
| 000       | Normal mode of operation      | 400 ms           |
| 001       | Normal mode of operation      | 200 ms (Default) |
| 010       | Normal mode of operation      | 100 ms           |
| 011       | Test mode                     | 16.7 ms          |
| 100       | Simulation test mode use only | 1.0 ms           |
| 101       | Reserved for future use       |                  |
| 110       | Reserved for future use       |                  |
| 111       | Reserved for future use       |                  |

#### Table 7. INTEGRATION TIME REGISTER

#### **Programming Sequence and Command Summary**

This section describes supported commands and programming sequence. The NOA1302 only supports single byte write and a single byte read  $I^2C$  commands. Ambient light intensity count is 16 bits wide, thus two  $I^2C$  read commands are needed.

Table 8 describes supported commands. All of these commands have to be sent to the fixed address (0x39).

# Table 8. DEVICE COMMANDS

| Command | Function                             |  |
|---------|--------------------------------------|--|
| 0x00h   | Start reading ADC data               |  |
| 0x03h   | Complete reading ADC data            |  |
| 0x1Dh   | Change EC[0] to 0                    |  |
| 0x18h   | Reset EC[2:0] to default value (001) |  |
| 0x43h   | Prepare ADC LS byte for reading      |  |
| 0x83h   | Prepare ADC MS byte for reading      |  |
| 0x88h   | Change EC[1] to 1                    |  |
| 0x90h   | Change EC[2] to 1                    |  |

#### **Programming Sequence**

To read 16 bits wide ambient light intensity count, the following commands must be issued in sequence:

- 1. Send write command 0x00h to start the ADC conversion cycle.
- 2. Send write command 0x03h to complete the ADC cycle.
- 3. Send write command 0x43h to prepare the LS byte for reading.
- 4. Send read byte command, returns LS byte of count.
- 5. Send write command 0x83h to prepare the MS byte for reading.
- 6. Send read byte command, returns MS byte of count.

To change the integration time, for example to 100 ms, the following commands must be used in sequence:

- 1. Send write command 0x1Dh to set EC[0] = 0.
- 2. Send write command 0x88h to set EC[1] = 1, now EC[2:0] = 010.

# Rise and Fall Time of SDA (Output)

Proper operation of the I<sup>2</sup>C bus depends on keeping the bus capacitance low and selecting suitable pull up resistor values. Figure 17 and Figure 18 show the rise and fall time on SDA in output mode under maximum load conditions. The measurement set up is shown in Figure 19. Figure 14 shows the maximum value of the pull up resistor ( $R_P$ ) as a function of the I<sup>2</sup>C data bus capacitance.