onsemi

Silicon Carbide (SiC) MOSFET – EliteSiC, 28 mohm, 1700 V, M1, D2PAK-7L NTBG028N170M1

Features

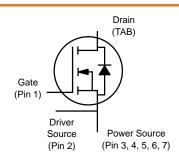
- Typ. $R_{DS(on)} = 28 \text{ m}\Omega$
- Ultra Low Gate Charge (typ. $Q_{G(tot)} = 222 \text{ nC}$)
- Low Effective Output Capacitance (typ. $C_{oss} = 200 \text{ pF}$)
- 100% Avalanche Tested
- RoHS Compliant

Typical Applications

- UPS
- DC–DC Converter
- Boost Converter

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage		V _{DSS}	1700	V	
Gate-to-Source Voltage		V _{GS}	-15/+25	V	
Recommended Operation Val- ues of Gate-to-Source Voltage		T _C < 175°C	V _{GSop}	-5/+20	V
Continuous Drain Current (Note 2)	Steady State	T _C = 25°C	۱ _D	71	A
Power Dissipation (Note 2)			PD	428	W
Continuous Drain Current (Note 2)	Steady State	T _C = 100°C	۱ _D	53	A
Power Dissipation (Note 2)			P _D	214	W
Pulsed Drain Current (Note 3)	T _A = 25°C		I _{DM}	195	A
Operating Junction and Storage Temperature Range		T _J , T _{stg}	–55 to +175	°C	
Source Current (Body Diode)		۱ _S	99	А	
Single Pulse Drain–to–Source Avalanche Energy ($I_{L(pk)} = 30 \text{ A}, L = 1 \text{ mH}$) (Note 4)			E _{AS}	450	mJ
Maximum Lead Temperature for Soldering (1/8" from case for 5 s)			ΤL	300	°C

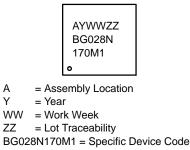

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface mounted on a FR-4 board using1 in2 pad of 2 oz copper.

 The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
Repetitive rating, limited by max junction temperature.

4. EAS of 450 mJ is based on starting $T_J = 25^{\circ}$ C; L = 1 mH, I_{AS} = 30 A, V_{DD} = 120 V, V_{GS} = 18 V.

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
1700 V	40 mΩ @ 20 V	71 A



N-CHANNEL MOSFET

D2PAK-7L CASE 418BJ

MARKING DIAGRAM

ORDERING INFORMATION

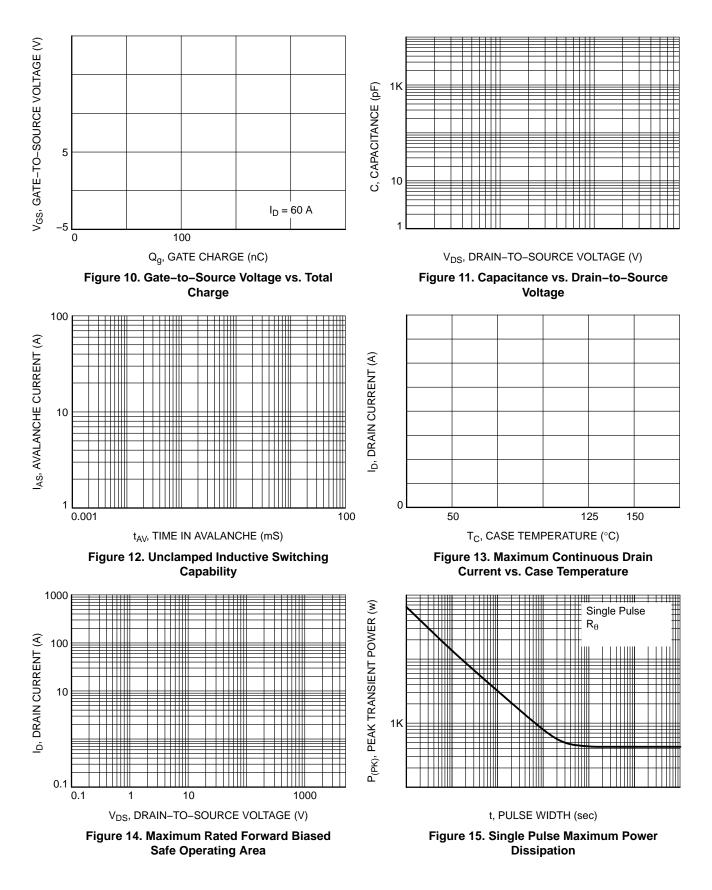
Device	Package	Shipping [†]
NTBG028N170M1	D2PAK-7L	800 ea/ Tape&Reel

⁺For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Тур	Max	Unit
Junction-to-Case - Steady State (Note 2)	$R_{\theta JC}$	0.35		°C/W
Junction-to-Ambient - Steady State (Notes 1, 2)	R_{\thetaJA}		40	

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)


Parameter Symbol

TYPICAL CHARACTERISTICS

Figure 7. SW Loss vs. ID 25°C

Figure 8. SW Loss vs. ID 125

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

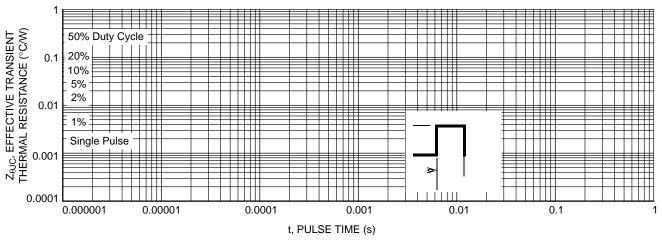
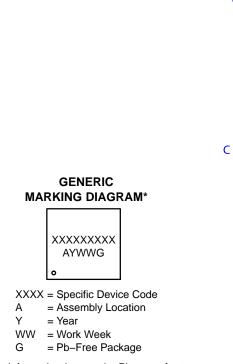


Figure 16. Transient Thermal Impedance


D²PAK7 (TO-263-7L HV) CASE 418BJ ISSUE B

А

c2

н

DATE 16 AUG 2019

*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi