onsemi

<u>Silicon Carbide (SiC)</u> <u>MOSFET</u> – EliteSiC, 29 mohm, 1200 V, M3S, D2PAK-7L

NTBG030N120M3S

Features

- Typ. $R_{DS(on)} = 29 \text{ m}\Omega @ V_{GS} = 18 \text{ V}$
- Ultra Low Gate Charge ($Q_{G(tot)} = 107 \text{ nC}$)
- High Speed Switching with Low Capacitance ($C_{oss} = 106 \text{ pF}$)
- 100% Avalanche Tested
- This Device is Halide Free and RoHS Compliant with exemption 7a, Pb Free 2LI (on second level interconnection)

Typical Applications

- Solar Inverters
- Electric Vehicle Charging Stations
- UPS (Uninterruptible Power Supplies)
- Energy Storage Systems
- SMPS (Switch Mode Power Supplies)

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	1200	V
Gate-to-Source Voltage			V _{GS}	-10/+22	V
Continuous Drain Current (Notes 2, 3)	Steady State	$T_C = 25^{\circ}C$	۱ _D	77	A
Power Dissipation (Note 2)			P _D	348	W

NTBG030N120M3S

THERMAL CHARACTERISTICS

Parameter	Symbol	Max	Unit
Junction-to-Case - Steady State (Note 2)	$R_{\theta JC}$	0.43	°C/W
Junction-to-Ambient - Steady State (Notes 1, 2)	R_{\thetaJA}	40	

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value	Unit
Operation Values of Gate-to-Source Voltage	V _{GSop}	-53 +18	V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

Symbol	Test Condition	Min	Тур	Max	Unit			
OFF-STATE CHARACTERISTICS								
V _{(BR)DSS}	$V_{GS} = 0 V, I_D = 1 mA$	1200	-	_	V			
V _{(BR)DSS} /T _J	I _D = 1 mA, referenced to 25°C (Note 7)	-	0.3	-	V/°C			
I _{DSS}	$V_{GS} = 0 V, V_{DS} = 1200 V$	-	-	100	μΑ			
I _{GSS}	V_{GS} = +22/-10 V, V_{DS} = 0 V	-	I	±1	μΑ			
	Symbol V _{(BR)DSS} V _{(BR)DSS} /TJ I _{DSS} I _{GSS}	SymbolTest Condition $V_{(BR)DSS}$ $V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$ $V_{(BR)DSS}/T_J$ $I_D = 1 \text{ mA}, \text{ referenced to } 25^{\circ}C$ (Note 7) I_{DSS} $V_{GS} = 0 \text{ V}, V_{DS} = 1200 \text{ V}$ I_{GSS} $V_{GS} = +22/-10 \text{ V}, V_{DS} = 0 \text{ V}$	Symbol Test Condition Min $V_{(BR)DSS}$ $V_{GS} = 0 V$, $I_D = 1 mA$ 1200 $V_{(BR)DSS}/T_J$ $I_D = 1 mA$, referenced to 25°C (Note 7) - I_{DSS} $V_{GS} = 0 V$, $V_{DS} = 1200 V$ - I_{GSS} $V_{GS} = +22/-10 V$, $V_{DS} = 0 V$ -	Symbol Test Condition Min Typ $V_{(BR)DSS}$ $V_{GS} = 0 V$, $I_D = 1 mA$ 1200 - $V_{(BR)DSS}/T_J$ $I_D = 1 mA$, referenced to 25°C - 0.3 I_{DSS} $V_{GS} = 0 V$, $V_{DS} = 1200 V$ - - I_{GSS} $V_{GS} = +22/-10 V$, $V_{DS} = 0 V$ - -	Symbol Test Condition Min Typ Max $V_{(BR)DSS}$ $V_{GS} = 0 \ V, \ I_D = 1 \ mA$ 1200 - - $V_{(BR)DSS}/T_J$ $I_D = 1 \ mA, \ referenced \ to \ 25^{\circ}C \ (Note \ 7)$ - 0.3 - I_{DSS} $V_{GS} = 0 \ V, \ V_{DS} = 1200 \ V$ - - 100 I_{GSS} $V_{GS} = +22/-10 \ V, \ V_{DS} = 0 \ V$ - - ±1			

Coto Thusehold Valters	\mathcal{M}	$V_{GS} = V_{DS}, I_D = 15 \text{ mA}$	2.04	2.4	4.4	V
	rDS(on)	v _{GS} = 18 V, I _D = 30 A, T _J = 25°C	1	29	39	mΩ
		V _{GS} = 18 V, I _D = 30 A, T _J = 175°C (Note 7)	-	58	-	
Forward Transconductance	9 _{FS}	V _{DS} = 10 V, I _D = 30 A (Note 7)	-	30	-	S

CHARGES, CAPACITANCES & GATE RESISTANCE

Input Capacitance	C _{ISS}	V_{GS} = 0 V, f = 1 MHz, V_{DS} = 800 V	-	2430	-	pF
Output Capacitance	C _{OSS}		-	106	-	
Reverse Transfer Capacitance	C _{RSS}		-	9.4	-	
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = -3/18 \text{ V}, \text{ V}_{DS} = 800 \text{ V},$	-		-	-

NTBG030N120M3S

NTBG030N120M3S

D²PAK7 (TO-263-7L HV) CASE 418BJ ISSUE B

А

c2

н

DATE 16 AUG 2019

*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi