

Features

- Typ. $R_{DS(on)} = 65 \text{ m}\Omega$ @ $V_{GS} = 18 \text{ V}$
- Ultra Low Gate Charge $(Q_{G(tot)} = 57 \text{ nC})$
- High Speed Switching with Low Capacitance ($C_{oss} = 57 \text{ pF}$)
- 100% Avalanche Tested
- This Device is Halide Free and RoHS Compliant with exemption 7a, Pb–Free 2LI (on second level interconnection)

Typical Applications

- Solar Inverters
- Electric Vehicle Charging Stations
- UPS (Uninterruptible Power Supplies)
- Energy Storage Systems
- SMPS (Switch Mode Power Supplies)

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Param	Parameter			Value	Unit
Drain-to-Source Voltage)		V_{DSS}	1200	V
Gate-to-Source Voltage			V_{GS}	-10/+22	V
Continuous Drain Current (Notes 2, 3)	Steady State	T _C = 25°C			

THERMAL CHARACTERISTICS

Parameter	Symbol	Max	Unit
Junction-to-Case - Steady State (Note 2)	$R_{ heta JC}$	0.87	°C/W
Junction-to-Ambient - Steady State (Notes 1, 2)	$R_{\theta JA}$	40	

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value	Unit
Operation Values of Gate-to-Source Voltage	V_{GSop}	−5−3 +18	V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

OFF-STATE CHARACTERISTICS Drain-to-Source Breakdown Voltage $V_{(BR)DSS}$ $V_{GS} = 0$ V, $I_D = 1$ mA 1200 - Drain-to-Source Breakdown Voltage $V_{(BR)DSS}/T_J$ $I_D = 1$ mA, referenced to 25°C - 0.3				Min	Тур	Max	Unit
Drain-to-Source Breakdown Voltage $V_{(BR)DSS}/T_J$ $I_D = 1 \text{ mA, referenced to } 25^{\circ}\text{C}$ - 0.3	CHARACTERISTICS						
	rce Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	1200	-	-	V
Temperature Coefficient (Note 7)		/ _{(BR)DSS} /T _J	I _D = 1 mA, referenced to 25°C (Note 7)	-	0.3	-	V/°C

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified) (continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit	
SOURCE-DRAIN DIODE CHARACTERISTICS							
Continuous Source-Drain Diode Forward Current (Note 2)	I _{SD}	$V_{GS} = -3 \text{ V, T}_{C} = 25^{\circ}\text{C}$ (Note 7)	-	-	33	Α	
Pulsed Source–Drain Diode Forward Current (Note 4)	I _{SDM}	1	-	-	93		
Forward Diode Voltage	V_{SD}	$V_{GS} = -3 \text{ V}, I_{SD} = 15 \text{ A}, T_{J} = 25^{\circ}\text{C}$	_	4.7	_	V	
Reverse Recovery Time	t _{RR}	$V_{GS} = -3/18 \text{ V}, I_{SD} = 15 \text{ A},$	-	15	-	ns	
Reverse Recovery Charge	Q_{RR}	dl _S /dt = 1000 A/µs, V _{DS} = 800 V (Note 7)	-	63	-	nC	
Reverse Recovery Energy	E _{REC}		-	5.7	-	μJ	
Peak Reverse Recovery Current	I _{RRM}		-	8.6	_	Α	
Charge time	t _A		-	8.3	-	ns	
Discharge time	t _B	1	_	6.3	_	ns	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

6. E_{ON}/E_{OFF} result is with body diode

7. Defined by design, not subject to production test.

TYPICAL CHARACTERISTICS

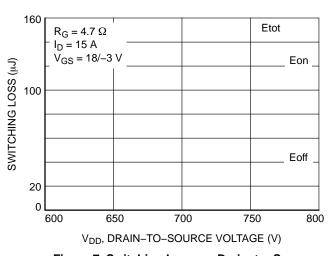


Figure 7. Switching Loss vs. Drain-to-Source Voltage

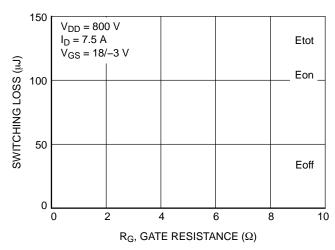
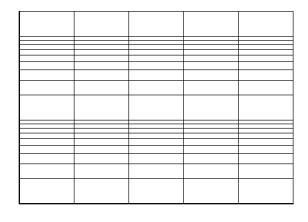



Figure 8. Switching Loss vs. Gate Resistance

Diode Forward Voltage

 $\ensuremath{\mathsf{V}_{\text{SD}}}$ Figure 9. Reverse Drain Current vs. Body

Figure 10. Gate-to-Source Voltage vs. Total Charge

Figure 11. Capacitance vs. Drain-to-Source Voltage

Figure 12. Unclamped Inductive Switching Capability

D²PAK7 (TO-263-7L HV) CASE 418BJ ISSUE B

DATE 16 AUG 2019

Α

c2

Н

C

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code A = Assembly Location

Y = Year
WW = Work Week
G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

