<u>Silicon Carbide (SiC)</u> <u>MOSFET</u> – EliteSiC, 80 mohm, 1200 V, M1, D2PAK-7L

NTBG080N120SC1

Features

- Typ. $R_{DS(on)} = 80 \text{ m}\Omega$
- Ultra Low Gate Charge (Typ. $Q_{G(tot)} = 56 \text{ nC}$)
- Low Effective Output Capacitance (Typ. C_{oss} = 79 pF)
- 100% Avalanche Tested
- $T_J = 175^{\circ}C$
- This Device is Halide Free and RoHS Compliant with exemption 7a, Pb–Free 2LI (on second level interconnection)

Typical Applications

- UPS
- DC-DC Converter
- Boost Inverter

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

	Parameter	Symbol	Value	Unit
Drain-to-So	irce Voltage	V _{DSS}	1200	V
Gate-to-Sou	rce Voltage	V _{GS}	-15/+25	V

Table 1. THERMAL CHARACTERISTICS

Parameter	Symbol	Мах	Unit
Thermal Resistance Junction-to-Case (Note 1)	$R_{ extsf{ heta}JC}$	0.84	°C/W
Thermal Resistance Junction-to-Ambient (Note 1)	$R_{ hetaJA}$	40	°C/W

Table 2. ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise stated)

Parameter	Symbol Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 V, I_D = 1 mA$	1200			V

Drain-to-Source Breakdown Voltage

Table 2. ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise stated) (continued)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit			
DRAIN SOURCE DIODE CHARACTERISTICS									
Reverse Recovery Time	t _{RR}	$V_{GS} = -5/20 \text{ V}, I_{SD} = 20 \text{ A}, dI_S/dt = 1000 \text{ A}/\mu \text{s}$		16.2		ns			
Reverse Recovery Charge	Q _{RR}			61.6		nC			
Reverse Recovery Energy	E _{REC}			4.1		μJ			
Peak Reverse Recovery Current	I _{RRM}			7.6		А			

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

Figure 1. On Region Characteristics

TJ, JUNCTION TEMPERATURE (°C)

V_{GS}, GATE–TO–

Figure 5. Transfer Characteristics

Figure 2. Normalized On Resistance vs. Drain Current and Gate Voltage

Figure 4. On Resistance vs. Gate to Source Voltage

Figure 6. Diode Forward Voltage vs. Current

D²PAK7 (TO-263-7L HV) CASE 418BJ ISSUE B

А

c2

н

DATE 16 AUG 2019

*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi