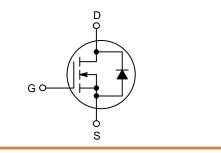


<u>Ca</u> (<u>C)</u> <u>MO FET</u> - E, C, 20 , 1200 V, M1, D

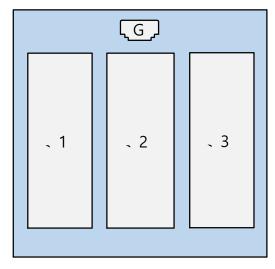
NTC020N120 C1

Description

Silicon Carbide (SiC) MOSFET uses a completely new technology that provide superior switching performance and higher reliability compared to Silicon. In addition, the low ON resistance and compact chip size ensure low capacitance and gate charge. Consequently, system benefits include highest efficiency, faster operation frequency, increased power density, reduced EMI, and reduced system size.

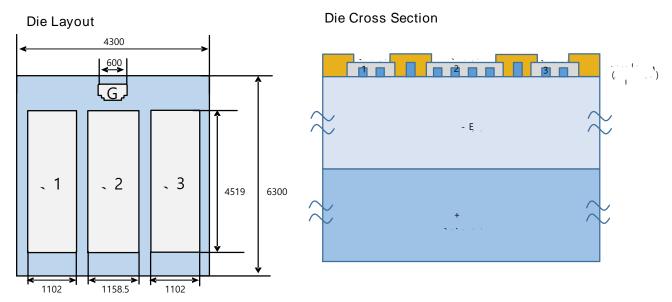

Features

- 1200 V @ T_J= 175°C
- Typ $R_{DS(on)} = 20 \text{ m}\Omega$ at $V_{GS} = 20 \text{ V}$, $I_D = 60 \text{ A}$
- High Speed Switching with Low Capacitance
- 100% UIL Tested
- This Device is Halide Free and RoHS Compliant with exemption 7a, Pb–Free 2LI (on second level interconnection)


Applications

- Industrial Motor Drive
- UPS
- Boost Inverter
- PV Charger

DIE DIAGRAM



Die Information

Water Diameter	6 inch	
Die Size	4,300 x 6,300 μm	
 Metallization 		
· Top	Ti/TiN/Al	5 μm
· Back	Ti/NiV/Ag	
 Die Thickness 	Typ. 200 μm	
 Gate Pad Size 	600 x 310 μm	

ORDERING INFORMATION

See detailed ordering and shipping information on page 7 of this data sheet.

Passivation Information

Passivation Material: Polymide (PSPI)
Passivation Type: Local Passivation

Passivation Thickness 10 μm

: Passivation Area

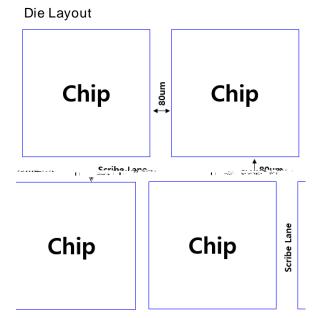
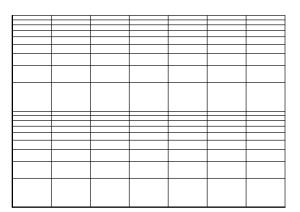


Figure 1. Bare Die Dimensions

MAXIMUM RATINGS ($T_C = 25^{\circ}C$ unless otherwise noted)


Parameter			Symbol	Value	Unit
Drain to Source Voltage		V _{DSS}	1200	V	
Gate to Source Voltage		V _{GS}	15/+25	V	
Recommended Operation Values of Gate to Source Voltage	T _C < 175°C		V_{GSop}	5/+20	V
Continuous Drain Current $R_{\theta JC}$	Steady State	T _C = 25°C	I _D	103	А
Power Dissipation $R_{\theta JC}$			P _D	535	W
Continuous Drain Current $R_{\theta JC}$	Steady State	T _C = 100°C	I _D	73	А
Power Dissipation $R_{\theta JC}$	1		P _D	267	W
Pulsed Drain Current (Note 2)	T _C = 25°C		I _{DM}	412	Α
Single Pulse Surge Drain Current Capability	$T_C = 25^{\circ}C$, $t_p = 10 \mu s$, $R_G = 4.7 \Omega$		I _{DSC}	807	Α

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain to Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 1 mA	1200			V
Drain to Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = 1 mA, referenced to 25°C		900		mV/°C

TYPICAL CHARACTERISTICS ($T_J = 25$ °C unless otherwise noted)

TYPICAL CHARACTERISTICS (T _J = 25°	

TYPICAL CHARACTERISTICS ($T_J = 25$ °C unless otherwise noted) (continued)

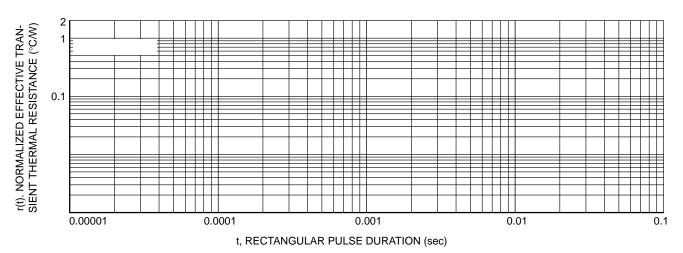


Figure 14. Junction to Ambient Thermal Response

