

Symbol	Paramete	Ratings	Unit V		
V _{DSmax}	Drain to Source Voltage	1200			
V _{GSmax}	Max. Gate to Source Voltage	@ T _C < 150°C	15 / +25	V	
V _{GSop} (DC)	Recommended operation Values of Gate Source Voltage	@ T _C < 150°C	5 / +20	V	
V _{GSop} (AC)	Recommended operation Values of Gate@ T _C < 150°CGateSource Voltage (f > 1 Hz)		5 / +20	V	
I _D	Continuous Drain Current	$V_{GS} = 20 \text{ V}, \text{ T}_{C} = 25^{\circ}\text{C}$	29	A	
		$V_{GS} = 20 \text{ V}, \text{ T}_{C} = 100^{\circ}\text{C}$	21		
I _{D(Pulse)}	Pulse Drain Current Pulse width tp limited by Tj max		125	A	
E _{AS}	Single Pulse Avalanche Energy (Note 1)		171	mJ	
P _{tot}	Power Dissipation	$T_C = 25^{\circ}C$	170	W	
		T _C = 150°C	28	1	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		55 to +175	°C	

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}C$, unless otherwise noted)

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. E_{AS} of 171 mJ is based on starting Tj = 25°C, L = 1 mH, I_{AS} = 18.5 A, , V_{DD}

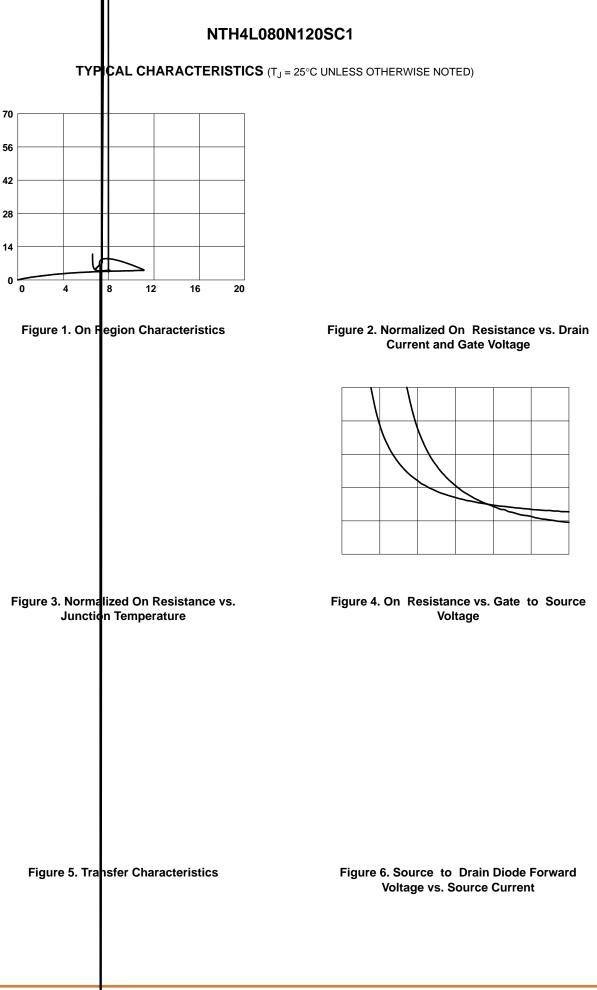
ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions		Тур	Max	Unit
OFF CHARACT	ERISTICS					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 100 \ \mu A, \ V_{GS} = 0 \ V$	1200			V
$\Delta \text{BV}_{\text{DSS}} / \Delta \text{T}_{\text{J}}$	Breakdown Voltage Temperature Coefficient	$I_D = 5 \text{ mA}$, Referenced to 25°C		0.3		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} = 1200 V, V_{GS} = 0 V T_{C} = 25°C T_{C} = 150°C			100 1.0	μA mA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = 25 \text{ V}, V_{DS} = 0 \text{ V}$			1	μΑ
I _{GSSR}	Gate to Source Leakage Current, Reverse	$V_{GS} = 15 \text{ V}, V_{DS} = 0 \text{ V}$			1	μΑ

ON CHARACTERISTICS

V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 5 \text{ mA}$	1.8	2.75	4.3	V
R _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = 20 \text{ V}, \text{ I}_{D} = 20 \text{ A}$		80	110	mΩ
		V_{GS} = 20 V, I _D = 20 A, T _C = 150°C		127	162	
9 FS	Forward Transconductance	V _{DS} = 20 V, I _D = 20 A		11.3		S
		V_{DS} = 20 V, I _D = 20 A, T _C = 150°C		9.8		

DYNAMIC CHARACTERISTICS


C _{iss}	Input Capacitance	$V_{DS} = 800 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	1112	1670	pF
C _{oss}	Output Capacitance		80	120	pF
C _{rss}	Reverse Transfer Capacitance		6.5	10	pF
E _{oss}	Coss Stored Energy		32		μJ

SWITCHING CHARACTERISTICS

Γ

t_{d(on)} Turn-On Delay Time

V_{CC} = 800 V, I_C = 20 A,

www.onsemi.com

TYPICAL CHARACTERISTICS (T_J = 25° C UNLESS OTHERWISE NOTED) (CONTINUED)

+ + + + + + + + + + + + + + + + + + + +	 	

TYPICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ UNLESS OTHERWISE NOTED) (CONTINUED)

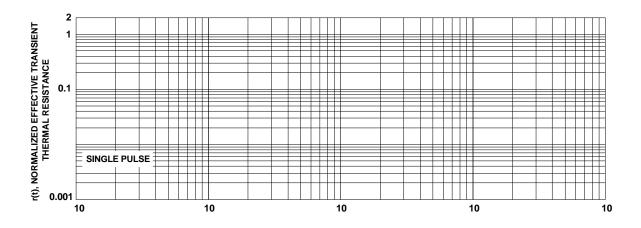


Figure 13. Junction to Case Transient Thermal Response Curve

			TO-247-4LD CASE 340CJ ISSUE A			DATE 16 SEP 2019
A	E	A	B A2	E1	Øp1 D2	
E/2		Q D	Ø		D1	
b2 b1 (3X)		L	L1 A1			
1 e1 ⊕ 0.254		4 b(4X)	с			

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi