

Silicon Carbide (SiC) MOSFET - 13.5 mohm, 750 V, M2, TO-247-4L

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
750 V	18 mΩ @ 18 V	140 A

NVH4L018N075SC1

Features

- Typ. $R_{DS(on)} = 13.5 \text{ m}\Omega$ @ $V_{GS} = 18 \text{ V}$ Typ. $R_{DS(on)} = 18 \text{ m}\Omega$ @ $V_{GS} = 15 \text{ V}$
- Ultra Low Gate Charge (Q_{G(tot)} = 262 nC)
- High Speed Switching with Low Capacitance (Coss = 365 pF)
- 100% Avalanche Tested
- AEC Q101 Qualified and PPAP Capable
- This Device is Halide Free and RoHS Compliant with exemption 7a,
 Pb Free 2LI (on second level interconnection)

Typical Applications

- Automotive On Board Charger
- Automotive DC-DC Converter for EV/HEV
- Automotive Traction Inverter

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Value	Unit
Drain-to-Source Voltage	V_{DSS}	750	V
Gate-to-Source Voltage	V_{GS}	-8/+22	V

Recommended Operation Values $T_C < 175^{\circ}C$ of Gate-to-Source Voltage

N CHANNEL MOSFET

MARKING DIAGRAM

H4L018N075SC = Specific Device Code

A = Assembly Location

Y = Year WW = Work Week ZZ = Lot Traceability

	T_A °C, $_p$ = 10 μ s, R_G = 4.7 Ω	I _{DSC}	807	Α
Operating Junction and S Range	T _J , T _{stg}	-55 to +175	°C	
Source Current (Body Di	I _S	108	Α	
Single Pulse Drain-to-S Energy (I _{L(pk)} = 18 A, L =	E _{AS}	162	mJ	
Maximum Lead Tempera	T_L	300	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Repetitive rating, limited by max junction temperature.
- 3. EAS of 162 mJ is based on starting $T_J = 25$ °C; L = 1 mH, $I_{AS} = 18$ A, $V_{DD} = 50$ V, $V_{GS} = 18$ V.

ORDERING INFORMATION

Device	Package	Shipping
NVH4L018N075SC1	TO247-4L	30 Units / Tube

NVH4L018N075SC1

Table 1. THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Case - Steady State (Note 4)	$R_{ heta JC}$	0.3	°C/W
Junction-to-Ambient - Steady State (Notes 4)	$R_{\theta JA}$	40	

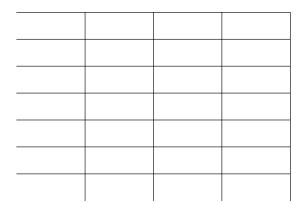

NVH4L018N075SC1

Table 2. ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified) (continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
SOURCE DRAIN DIODE CHARACTER	ISTICS					
Reverse Recovery Time	t _{RR}	$V_{GS} = -5/18 \text{ V}, I_{SD} = 66 \text{ A},$ $dI_S/dt = 1000 \text{ A}/\mu\text{s}$	-	28	-	ns
Reverse Recovery Charge	Q _{RR}		-	221	-	nC
Reverse Recovery Energy	E _{REC}		-	19	-	μJ
Peak Reverse Recovery Current	I _{RRM}		•	•	-	='

NVH4L018N075SC1

TYPICAL CHARACTERISTICS

TO-247-4LD CASE 340CJ ISSUE A

DATE 16 SEP 2019

Α В Øp1 D2 Α E E1 **A2** Q E/2 D1 D Ø L1 b2 **A1** b1 (3X) Ĺ 1 4 С b(4X) e1 e 2X ⊕ 0.254 M B A M

