MOSFET - S C P∂ e , S g e N-C^a e , TO247-4L

650 V, 19 mΩ, 99 A

NVH4L025N065SC1

Features

- Typ. $R_{DS(on)} = 19 \text{ m}\Omega @ V_{GS} = 18 \text{ V}$ Typ. $R_{DS(on)} = 25 \text{ m}\Omega @ V_{GS} = 15 \text{ V}$
- Ultra Low Gate Charge ($Q_{G(tot)} = 164 \text{ nC}$)
- Low Capacitance ($C_{oss} = 278 \text{ pF}$)
- 100% Avalanche Tested
- AEC–Q101 Qualified and PPAP Capable
- This Device is Pb–Free and is RoHS Compliant
- Typical Applications
- Automotive On Board Charger
- Automotive DC/DC Converter for EV/HEV

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Param	Symbol	Value	Unit		
Drain-to-Source Voltage	V _{DSS}	650	V		
Gate-to-Source Voltage	V _{GS}	-8/+22	V		
Recommended Operatio of Gate-to-Source Volta	V _{GSop}	-5/+18	V		
Continuous Drain Current (Note 1)	Steady State	$T_C = 25^{\circ}C$	Ι _D	99	A
Power Dissipation (Note 1)			P _D	348	W
Continuous Drain Current (Note 1)	Steady State	T _C = 100°C	۱ _D	70	A
Power Dissipation (Note 1)			PD	174	W
Pulsed Drain Current (Note 2)	T _C	= 25°C	I _{DM}	323	A
Operating Junction and S Range	T _J , T _{stg}	–55 to +175	°C		
Source Current (Body Di	I _S	75	А		
Single Pulse Drain-to-S Energy ($I_{L(pk)}$ = 11.2 A, L	E _{AS}	62	mJ		
Maximum Lead Tempera	ture for S	oldering	Т	-	-

(1/8" from case for 5 s)

Ν	V	ŀ
N	V	ł

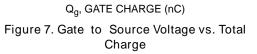
THERMAL RESISTANCE MAXIMUM R	ATINGS								
Parameter			Max						
Junction-to-Case - Steady State (Note 1)			0.4	3		°C/W			
Junction-to-Ambient - Steady State (Note 1)		40)					
ELECTRICAL CHARACTERISTICS (T	ı = 25°C unless o								
Parameter	Symbol		Min	Тур	Max	Unit			
OFF CHARACTERISTICS									
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}		650	-	-	V			
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J		-	0.15	-	V/°C			
Zero Gate Voltage Drain Current	I _{DSS}		-	-	10	μΑ			
			-	-	1	mA			
Gate-to-Source Leakage Current	I _{GSS}		-	-	250	nA			
ON CHARACTERISTICS (Note 2)									
Gate Threshold Voltage	V _{GS(TH)}		1.8	2.8	4.3	V			
Recommended Gate Voltage	V _{GOP}		-5	-	+18	V			
Drain-to-Source On Resistance	R _{DS(on)}		-	25	-	mΩ			
			-	19	28.5				
		V_{GS} = 18 V, I _D = 45 A, T _J = 175°C	_	24	-	1			
Forward Transconductance	9 _{FS}	V _{DS} = 10 V, I _D = 45 A	-	27	-	S			
CHARGES, CAPACITANCES & GATE RES	ISTANCE		3480						
Input Capacitance	C _{ISS}	V_{GS} = 0 V, f = 1 MHz, V_{DS} = 325 V	-	3480	-	pF			
Output Capacitance	C _{OSS}		-	-	•				

Reverse Recovery Charge

QQ

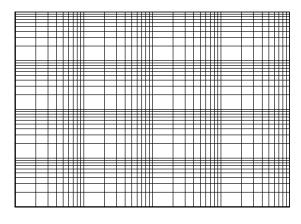
dl_S/dt = 1000 A/μs

Т


T

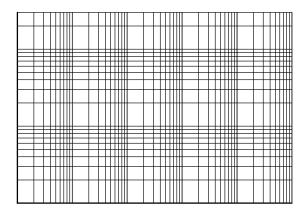
NVH4L025N065SC1

NVH4L025N065SC1


TYPICAL CHARACTERISTICS

>

				Т	П	r	r			Т	Т				-	TT
		_	H	+	н		-	_	H	+	+	_	_	\rightarrow	+	++
				_	1					_					-	
			\square	-	-			_	\square	+	+				+	++
																\square
											L					
			H		П				H	+	T				+	11
																\square
			H		Н				H	+	+				+	++
		-	H	+	Н			_	H	+	+				+	++
										-	-					
		_	H	+	н		-	_	H	+	+	 	_	+	+	++
		_	H	+	н		-	_	H	+	+		-	+	+	++
		_	H	+	Н			_	H	+	+	 			+	++
																\square
			LΤ		П				LΤ	Т	Г			IT	Г	IT
			\vdash	+	+		-		\vdash	+	+			\vdash	+	++
											1					
			П		П				П		Т				Т	TT
											L					
											L					


t_{AV}, TIME IN AVALANCHE (ms) Figure 9. Unclamped Inductive Switching Capability

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V) Figure 11. Safe Operating Area

Figure 8. Capacitance vs. Drain to Source Voltage

Figure 10. Maximum Continuous Drain Current vs. Case Temperature

NVH4L025N065SC1

TYPICAL CHARACTERISTICS

																			#
0.5 Duty Cycle																			+
	++	+			_													-	+
0.2																			
0.1																			-
0.02										¥ ∣	I	1	1						+
			01						P	рм									
Single Pulse									-	A				ŧ					-
				-					-	╊	► t ₁			+					+
		╎		+					1	→>	▶	1		+	+				╈

t, RECTANGULAR PULSE DURATION (s)

Figure 13. Junction to Case Thermal Response

			TO-247-4LD CASE 340CJ ISSUE A			DATE 16 SEP 2019
A	E	A	B A2	E1	Øp1 D2	
E/2		Q D	Ø		D1	
b2 b1 (3X)		L	L1 A1			
1 e1 ⊕ 0.254		4 b(4X)	с			

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi