

Features

- $\bullet \ \ \, \text{Typ. } R_{DS(on)} = 57 \,\, \text{m} \Omega \,\, @ \,\, V_{GS} = 18 \,\, V \\ \text{Typ. } R_{DS(on)} = 75 \,\, \text{m} \Omega \,\, @ \,\, V_{GS} = 15 \,\, V$
- Ultra Low Gate Charge $(Q_{G(tot)} = 61 \text{ nC})$
- Low Output Capacitance (C_{oss} = 107 pF)
- 100% Avalanche Tested
- AEC-Q101 Qualified and PPAP Capable
- This Device is Halide Free and RoHS Compliant with exemption 7a, Pb–Free 2LI (on second level interconnection)

Typical Applications

- Automotive On Board Charger
- Automotive DC-DC Converter for EV/HEV

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter

Table 1. THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Case - Steady State (Note 1)		1.01	°C/W
Junction-to-Ambient - Steady State (Note 1)	$R_{ heta JA}$	40	

Table 2. ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	ol Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 1 mA		650	-	-	V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = 20 mA, referenced to 25°C		-	0.15	-	V/°C
Zero Gate Voltage Drain Current	Inee	$V_{GS} = 0 \text{ V}.$	T ₁ = 25°C	_	_	10	μА

 	 	_	

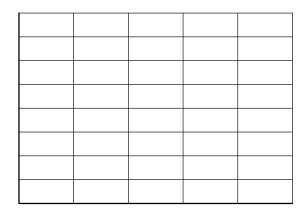

Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 5 \text{ mA}$	1.8	2.8	4.3	V
Recommended Gate Voltage	V_{GOP}		-5	-	+18	V
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 15 \text{ V}, I_D = 15 \text{ A}, T_J = 25^{\circ}\text{C}$	-	75	-	mΩ
		$V_{GS} = 18 \text{ V}, I_D = 15 \text{ A}, T_J = 25^{\circ}\text{C}$	-	57	85	
		$V_{GS} = 18 \text{ V}, I_D = 15 \text{ A}, T_J = 175^{\circ}\text{C}$	-	68	-	
Enfolkal/dlTransconductance	=					

 Table 2. ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified) (continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
DRAIN-SOURCE DIODE CHARACTER	ISTICS					
Reverse Recovery Time	t _{RR}	$V_{GS} = -5/18 \text{ V}, I_{SD} = 15 \text{ A},$ $dI_S/dt = 1000 \text{ A/}\mu\text{s}$	-	16	-	ns
Reverse Recovery Charge	Q _{RR}		-	72	-	nC
Reverse Recovery Energy	E _{REC}		-	7.4	-	μJ
Peak Reverse Recovery Current	I _{RRM}		-	9	-	Α
Charge Time	Та		-	9	-	ns
Discharge time	Tb		_	7	-	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS (continued)

 Q_g

Figure 7. Gate-to-Source Voltage vs. Total Charge

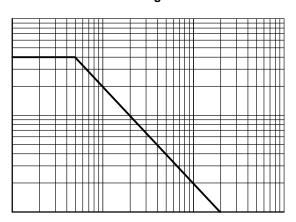
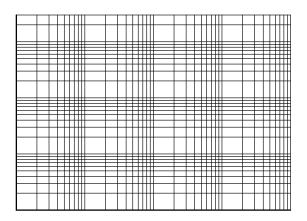
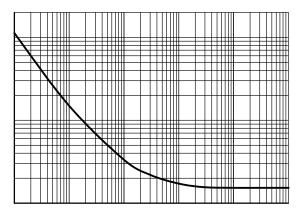




Figure 8. Capacitance vs. Drain-to-Source Voltage

TYPICAL CHARACTERISTICS (continued)

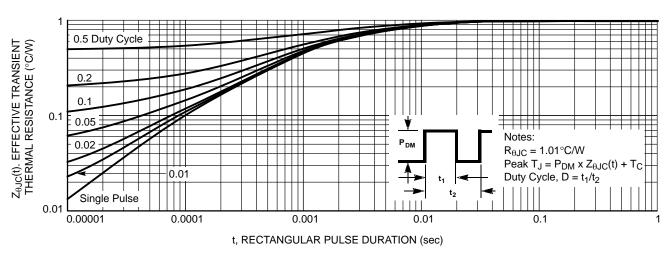


Figure 13. Junction-to-Case Thermal Response

TO-247-4LD CASE 340CJ ISSUE A

DATE 16 SEP 2019

Α В Øp1 D2 Α E E1 **A2** Q E/2 D1 D Ø L1 b2 **A1** b1 (3X) Ĺ 1 4 С b(4X) e1 e 2X ⊕ 0.254 M B A M

