A 45 45 750 V, 680 A S S D C456 6-P 146 M46

VE-T [™] **D M 6 NVH680S75L4SPC**

Product Description

The NVH680S75L4SPC is a power module from the VE–Trac $^{\text{\tiny{TM}}}$

Pin Description

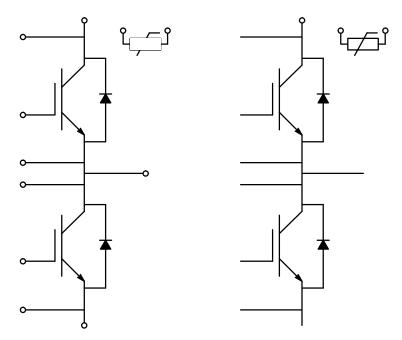
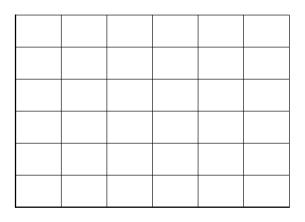


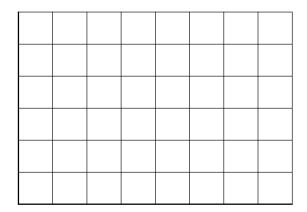
Figure 1. Pin Description

$\label{eq:module_characteristics} \begin{tabular}{ll} MODULE CHARACTERISTICS (T_{vj} = 25°C, Unless Otherwise Specified) \\ \end{tabular}$

Symbol	Parameter	Rating	Unit
T_{vj}	Operating Junction Temperature	-40 to 175	°C
T _{STG}	Storage Temperature	-40 to 125	°C
V _{ISO}	Isolation Voltage (DC, 0 Hz, 1 s)	4200	V
L _{sCE}	Stray Inductance	10	nΗ
RCC'+EE'	Module Lead Resistance, Terminals – Chip	0.75	mΩ
G	Module Weight	700	g
CTI	Comparative Tracking Index	>200	-
d _{creep}	Creepage: Terminal to Heatsink Terminal to Terminal	9.0 9.0	mm
d _{clear}	Clearance: Terminal to Heatsink Terminal to Terminal	4.5 4.5	mm

Symbol	Parameters	Conditions	Min	Тур	Max	Unit
Δρ	Pressure Drop in Cooling Circuit	10 L/min, 65°C, 50/50 EGW	ı	95	_	mbar
P (Note 1)	Maximum Pressure in Cooling Loop (relative)	T _{Baseplate} < 40°C T _{Baseplate} > 40°C	1 1	-	2.5	

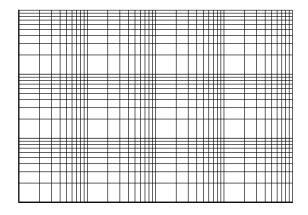

CHARACTERISTICS OF INVERSE DIODE (T $_{\rm vj}$ = 25°C, Unless Otherwise Specified)

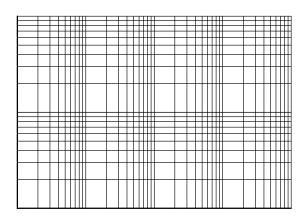

Symbol	Parameters	Conditions		Min	Тур	Max	Unit
V _F	Diode Forward Voltage (Terminal)	I _F = 500 A	T _{vj} = 25°C	ı	1.60	1.85	V
	Diode Forward Voltage (Chip)	I _F = 500 A	$T_{vj} = 25^{\circ}C$ $T_{vj} = 150^{\circ}C$ $T_{vj} = 175^{\circ}C$		1.53 1.45 1.40	1.78 - -	
		I _F = 680 A	$T_{vj} = 25^{\circ}C$ $T_{vj} = 150^{\circ}C$ $T_{vj} = 175^{\circ}C$	- - -	1.65 1.61 1.57	- - -	
E _{rr}	Reverse Recovery Energy	$I_F = 500 \text{ A}, V_R = 400 \text{ V},$ $V_{GE} = +15/-8 \text{ V},$ $R_{g.on} = 4.7 \Omega$	di/dt = 3.5 A/nS, $T_{vj} = 25^{\circ}\text{C}$ di/dt = 3.0 A/nS, $T_{vj} = 150^{\circ}\text{C}$	-	3 8	-	mJ
			di/dt = 2.8 A/nS, $T_{vj} = 175^{\circ}\text{C}$	ı	10	ı	
Q_{RR}	Recovered Charge	$I_F = 500 \text{ A}, V_R = 400 \text{ V}, V_{GE} = -8 \text{ V},$	$di/dt = 3.5 \text{ A/nS},$ $T_{vj} = 25^{\circ}\text{C}$	-	11	-	μC
		$R_{g.on} = 4.7 \Omega$	$di/dt = 3.0 \text{ A/nS},$ $T_{vj} = 150^{\circ}\text{C}$	-	32	-	
			$di/dt = 2.8 \text{ A/nS},$ $T_{vj} = 175^{\circ}\text{C}$	-	38	-	
I _{rr}	Peak Reverse Recovery Current	$I_F = 500 \text{ A}, V_R = 400 \text{ V}, V_{GE} = -8 \text{ V}, R_{g.on} = 4.7 \Omega$	$di/dt = 3.5 \text{ A/nS},$ $T_{vi} = 25^{\circ}\text{C}$	-	141	-	Α
			$di/dt = 3.0 \text{ A/nS},$ $T_{vj} = 150^{\circ}\text{C}$	-	247	-	
			di/dt = 2.8 A/nS, T _{vj} = 175°C	_	265	-	

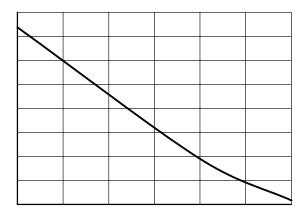
NTC SENSOR CHARACTERISTICS ($T_{vj} = 25^{\circ}C$, Unless Otherwise Specified)

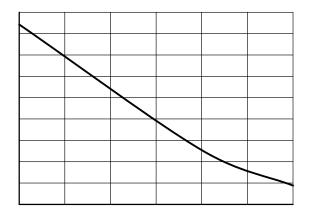
Symbol	Parameters	Conditions	Min	Тур	Max	Unit
R ₂₅ (Note 3)	Rated Resistance	$T_C = 25^{\circ}C$	-	5147	_	Ω
ΔR/R	Deviation of R ₁₀₅	$T_C = 105^{\circ}C, R_{105} = 472 \Omega$	5	_	5	%
P ₂₅	Power Dissipation	$T_C = 25^{\circ}C$	-	_	32	mW
B _{25/55}	B-Value	$R = R_{25} \exp [B_{25/55}]$ 25/45	6 e	-	='	•

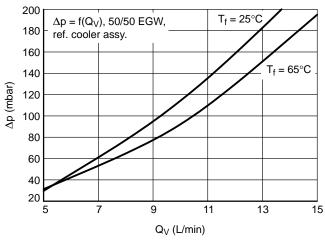
TYPICAL CHARACTERISTICS




I_F (A)


Figure 14. Diode Switching Losses vs. I_F


 $\mathsf{R}_\mathsf{G}\left(\Omega\right)$



TYPICAL CHARACTERISTICS

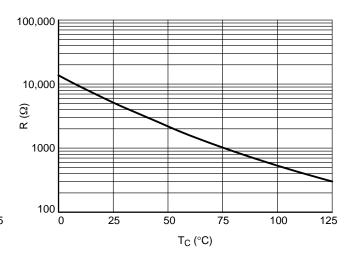


Figure 21. NTC Thermistor – Temperature Characteristic (Typical)

PACKAGE DIMENSIONS

SSDC33, 154.50x92.0 (SPC) CASE 183AC ISSUE A

www.onsemi.com

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: TECHNICAL SUPPORT

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada

ON Semiconductor Website: www.onsemi.com Phone: 011 421 33 790 2910