

 $V_{(BR)DSS}$ $R_{DS(on)}$

Drain-to-Source Voltage	V _{DSS}	1200	V		
Gate-to-Source Voltage	V_{GS}	V			
Recommended Operation Values of Gate-to-Source Voltage	T _C < 17	5°C	V_{GSop}	-5/+20	V
Continuous Drain Current R _{θJC}	Steady State	T _C = 25°C	I _D	103	А
Power Dissipation $R_{\theta JC}$			P_{D}	535	W
Continuous Drain Current $R_{\theta JC}$	Steady State	T _C = 100°C	I _D	73	А
Power Dissipation R _{θJC}]		P_{D}		

TO-247-3LD CASE 340CX

MARKING DIAGRAM

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

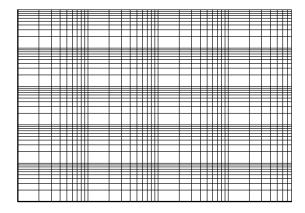
THERMAL RESISTANCE MAXIMUM RATINGS

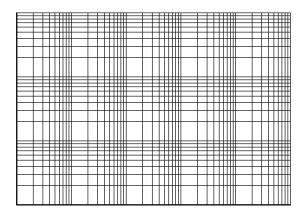
Parameter	Symbol	Value	Unit
Junction-to-Case (Note 1)	$R_{\theta JC}$	0.28	°C/W
Junction-to-Ambient (Note 1)	$R_{\theta JA}$	40	°C/W

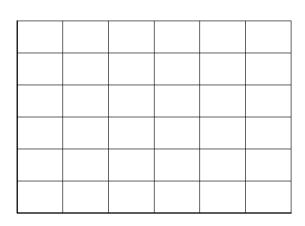
- 1. The entire application environment impacts the thermal resistance values shown,
- they are not constants and are only valid for the particular conditions noted.

 Repetitive rating, limited by max junction temperature.

 EAS of 264 mJ is based on starting T_J = 25°C; L = 1 mH, I_{AS} = 23 A, V_{DD} = 120 V, V_{GS} = 18 V.


ELECTRICAL CHARACTERISTICS


Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS	,			, ,		
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 1 mA	1200	_	-	V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = 1 mA, referenced to 25°C	_	900	_	mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 1200 V, T _J = 25°C	-	_	100	μΑ
		V _{GS} = 0 V, V _{DS} = 1200 V, T _J = 175°C	_	_	250	
Gate-to-Source Leakage Current	I _{GSS}	V _{GS} = +25/–15 V, V _{DS} = 0 V	-	_	±1	μΑ
ON CHARACTERISTICS						
Gate Threshold Voltage	V _{GS(th)}	$V_{GS} = V_{DS}$, $I_D = 20 \text{ mA}$	1.8	2.7	4.3	V
Recommended Gate Voltage	V _{GOP}		-5	_	+20	V
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 20 \text{ V}, I_D = 60 \text{ A}, T_J = 25^{\circ}\text{C}$	_	20	28	mΩ
		V _{GS} = 20 V, I _D = 60 A, T _J = 175°C	_	35	50	
Forward Transconductance	9FS	V _{DS} = 10 V, I _D = 60 A	_	28	_	S
CHARGES, CAPACITANCES & GATE	RESISTANCE					
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 800 V	_	2890	_	pF
Output Capacitance	C _{OSS}		_	260	-	
Reverse Transfer Capacitance	C _{RSS}		_	22	-	
Total Gate Charge	Q _{G(tot)}	$V_{GS} = -5/20 \text{ V}, V_{DS} = 600 \text{ V}, I_D = 80 \text{ A}$	_	203	-	nC
Threshold Gate Charge	Q _{G(th)}]	-	33	-	
Gate-to-Source Charge	Q _{GS}]	-	66	-	
Gate-to-Drain Charge	Q_{GD}	1	-	47	-	1
Gate Resistance	R_{G}	f = 1 MHz	_	1.81	_	Ω


TYPICAL CHARACTERISTICS

			-				
			-				
			-				
			-				
			_				
			_				
			_				
			 ·				
							F
 1	1 1						F
							Ť
							F

TYPICAL CHARACTERISTICS (continued)

TYPICAL CHARACTERISTICS (continued)

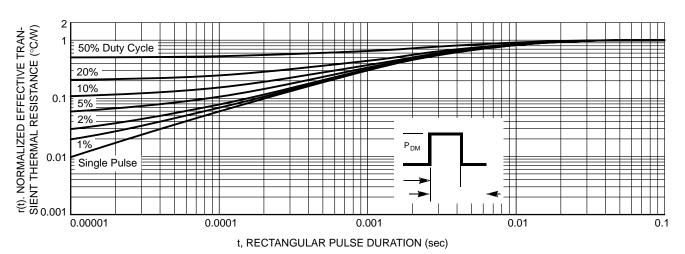
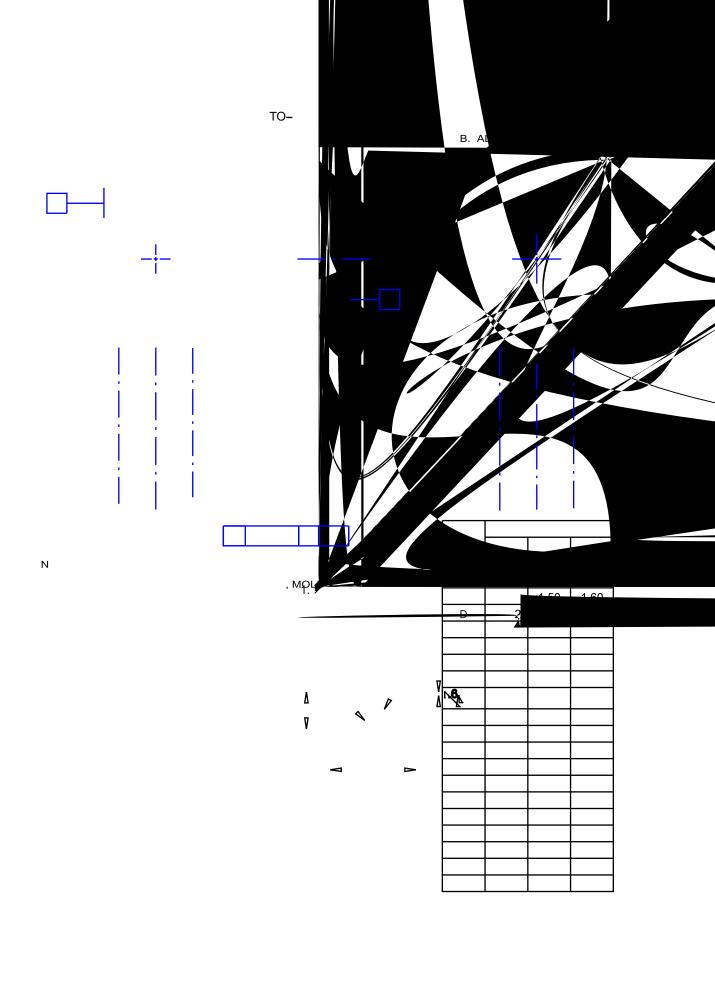



Figure 13. Junction-to-Ambient Thermal Response

