onsemi

Features

- Typ. $R_{DS(on)} = 32 \text{ m}\Omega @ V_{GS} = 18 \text{ V}$ Typ. $R_{DS(on)} = 42 \text{ m}\Omega @ V_{GS} = 15 \text{ V}$
- Ultra Low Gate Charge ($Q_{G(tot)} = 105 \text{ nC}$)
- High Speed Switching with Low Capacitance ($C_{oss} = 162 \text{ pF}$)
- 100% Avalanche Tested
- AEC Q101 Qualified and PPAP Capable
- This Device is Halide Free and RoHS Compliant with exemption 7a, Pb Free 2LI (on second level interconnection)

Typical Applications

- Automotive On Board Charger
- Automotive DC-DC Converter for EV/HEV

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Param	Symbol	Value	Unit		
Drain-to-Source Voltage	V _{DSS}	_{SS} 650			
Gate-to-Source Voltage	V _{GS}	-8/+22	V		
Recommended Operation ValuesT _C < 175°Cof Gate-to-Source Voltage			V _{GSop}	-5/+18	V
Continuous Drain Current (Note 2)	$\begin{array}{c} \text{Steady} \\ \text{State} \end{array} T_{\text{C}} = 25^{\circ}\text{C}$		۱ _D	66	A
Power Dissipation (Note 2)			P _D	291	W
Continuous Drain Current (Notes 1, 2)	Steady State	T _C = 100°C	۱ _D	46	A
Power Dissipation (Notes 1, 2)			P _D	145	W
Pulsed Drain Current (Note 3)	Т _С	= 25°C	I _{DM}	191	A
Single Pulse Surge Drain Current Capability	T _A = 25° R _G	°C, t _p = 10 μs, = 4.7 Ω	IDSC	315	A
Operating Junction and S Range	T _J , T _{stg}	–55 to +175	°C		
Source Current (Body Di	ا _S	75	А		
Single Pulse Drain-to-S Energy (I _{L(pk)} = 12 A, L =	E _{AS}	72	mJ		
Maximum Lead Tempera (1/8" from case for 5 s)	ΤL	300	°C		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. JA is constant value to follow guide table of LV/HV discrete final datasheet generation.

2. The entireift vpplitasheet

© Semiconductor Components Industries, LLC, 2021 December, 2023 – Rev. 4

Table 1. THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Case - Steady State (Note 2)	R_{\thetaJC}	0.52	°C/W
Junction-to-Ambient - Steady State (Notes 1, 2)	R_{\thetaJA}	40	

Table 2. ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit	
OFF CHARACTERISTICS								
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 V, I_D = 1 mA$		650	-	-	V	
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	$I_D = 20 \text{ mA}$, referenced to 25°C		-	0.15	-	V/°C	
Zero Gate Voltage Drain Current	I _{DSS}			-	-	10	μΑ	
				-	-	1	mA	
Gate-to-Source Leakage Current	I _{GSS}	$V_{GS} = +22/-8 V, V_{DS} = 0 V$		_	-	250	nA	

ON CHARACTERISTICS (Note 3) Gate Threshold Voltage

 $V_{GS(TH)}$ $V_{GS} = V_{DS}$, I

Table 2. ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified) (continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit		
DRAIN-SOURCE DIODE CHARACTERISTICS								
Reverse Recovery Time	t _{RR}	$V_{GS} = -5/18 \text{ V}, I_{SD} = 25 \text{ A},$	-	19	-	ns		
Reverse Recovery Charge	Q _{RR}	$dI_{S}/dl = 1000 A/\mu S$	-	99	-	nC		
Reverse Recovery Energy	E _{REC}		-	3.5	-	μJ		
Peak Reverse Recovery Current	I _{RRM}		-	10	-	А		
Charge Time	Та		-	11	-	ns		
Discharge Time	Tb		-	8.4	-	ns		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS (continued)

I _D = 25	A		

Figure 8. Capacitance vs. Drain-to-Source Voltage

T_C, CASE TEMPERATURE (°C) Figure 10. Maximum Continuous Drain Current vs. Case Temperature

P_(PK)

t, PULSE WIDTH (sec) Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (continued)

Figure 13. Junction-to-Case Thermal Response

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi