

Silicon Carbide (SiC) MOSFET - 60 mohm, 900 V, M2, TO-247-3L

NVHL060N090SC1

Features

- Typ. $R_{DS(on)} = 60 \text{ m}\Omega @ V_{GS} = 15 \text{ V}$
- Typ. $R_{DS(on)} = 43 \text{ m}\Omega @ V_{GS} = 18 \text{ V}$
- Ultra Low Gate Charge (typ. Q_{G(tot)} = 87 nC)
- Low Effective Output Capacitance (typ. Coss = 113 pF)
- 100% UIL Tested
- AEC-Q101 Qualified and PPAP Capable
- This Device is Halide Free and RoHS Compliant with exemption 7a, Pb–Free 2LI (on second level interconnection)

Typical Applications

- Automotive On Board Charger
- Automotive DC-DC converter for EV/HEV

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	900	V
Gate-to-Source Voltage			V _{GS}	+22/-8	V
Recommended Operation Values of Gate-to-Source Voltage	T _C < 175°C		V_{GSop}	+15/–5	V
Continuous Drain Current $R_{\theta JC}$	Steady State	T _C = 25°C	I _D	46	А
Power Dissipation $R_{\theta JC}$	State	Ü	P_{D}	221	W
Continuous Drain Current $R_{\theta JC}$	Steady State	T _C = 100°C	I _D		

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Note 1)	$R_{\theta JC}$	0.68	°C/W
Junction-to-Ambient (Note 1)	$R_{\theta JA}$	40	°C/W

^{1.} The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular Conditions noted.
Repetitive rating, limited by max junction temperature.
Peak current might be limited by transconductance.
E_{AS} of 162 mJ is based on starting T_J = 25°C; L = 1 mH, I_{AS} = 18 A, V_{DD} = 100 V, V_{GS} = 15 V.

ELECTRICAL CHARACTERISTICS (continued)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
DRAIN SOURCE DIODE CHARAC	TERISTICS					
Reverse Recovery Time	t _{RR}	$V_{GS} = -5/15 \text{ V}, I_{SD} = 30 \text{ A},$ $dI_S/dt = 1000 \text{ A/}\mu\text{s}, V_{DS} = 720 \text{ V}$		18		ns
Reverse Recovery Charge	Q _{RR}			84		nC
Reverse Recovery Energy	E		•		•	•

TYPICAL CHARACTERISTICS

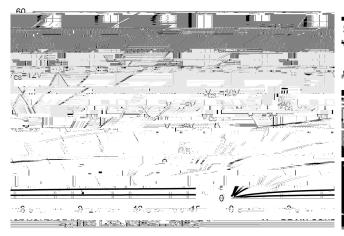


Figure 1. On Region Characteristics

Figure 2. Normalized On Resistance vs. Drain Current and Gate Voltage

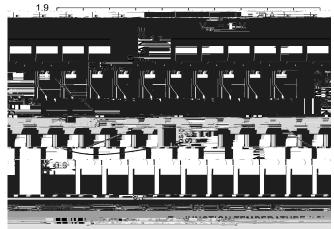


Figure 3. On Resistance Variation with Temperature

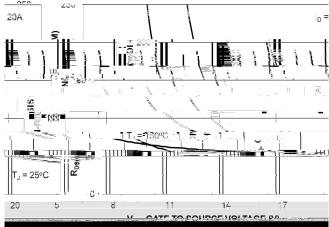


Figure 4. On Resistance vs. Gate to Source Voltage

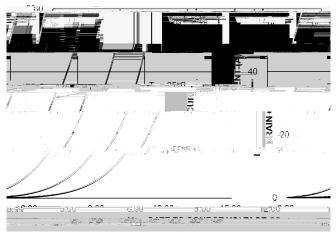


Figure 5. Transfer Characteristics

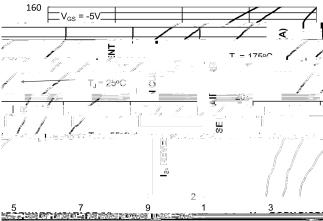


Figure 6. Diode Forward Voltage vs. Current

TYPICAL CHARACTERISTICS (continued)

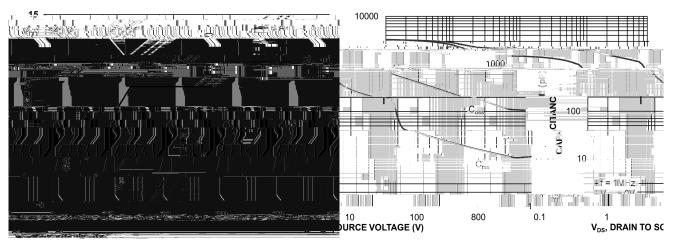


Figure 7. Gate to Source Voltage vs. Total Charge

Figure 8. Capacitance vs. Drain to Source Voltage

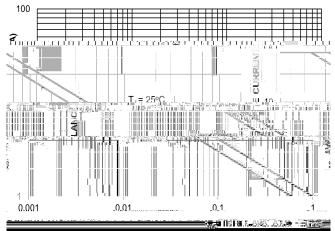


Figure 9. Unclamped Inductive Switching Capability

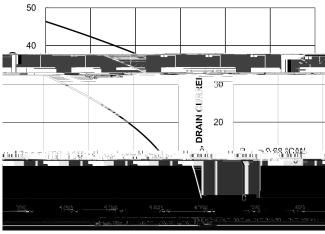


Figure 10. Maximum Continuous Drain Current vs. Case Temperature

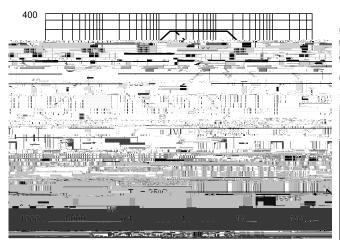


Figure 11. Safe Operating Area

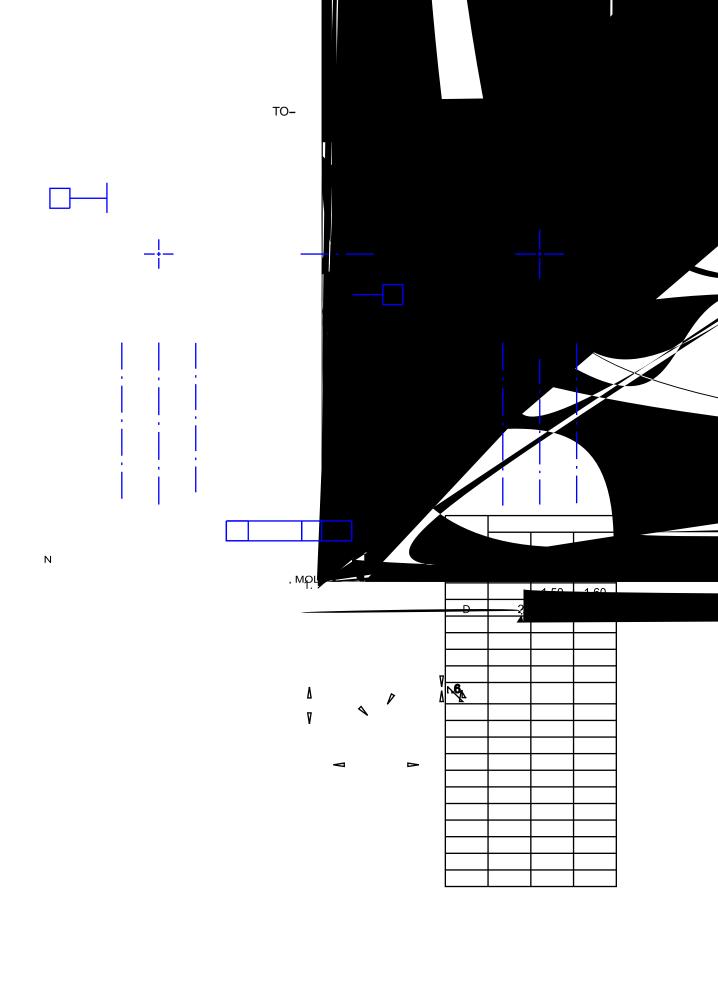


Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (continued)

Figure 13. Junction to Ambient Thermal Response

