Split T-Type NPC Power Module

1200 V, 160 A IGBT, 600 V, 100 A IGBT

The NXH160T120L2Q2F2SG is a power module containing a split T type neutral point clamped three level inverter, consisting of two 160 A / 1200 V Half Bridge IGBTs with inverse diodes, two Neutral Point 120 A / 600 V rectifiers, two 100 A / 600 V Neutral Point IGBTs with inverse diodes, two Half Bridge 60 A / 1200 V rectifiers and a negative temperature coefficient thermistor (NTC).

Features

- Split T type Neutral Point Clamped Three level Inverter Module
- 1200 V IGBT Specifications: $V_{CE(SAT)} = 2.15$ V, $E_{SW} = 4300 \mu J$
- 600 V IGBT specifications: $V_{CE(SAT)} = 1.47$ V, $E_{SW} = 2560 \mu J$
- Baseplate
- Solderable Pins
- Thermistor

Typical Applications

- Solar Inverters
- Uninterruptible Power Supplies

Figure 1. NXH160T120L2Q2F2SG Schematic Diagram

Table 1. ABSOLUTE MAXIMUM RATINGS (N	Note 1) $T_J = 25^{\circ}C$ unless otherwise noted
--------------------------------------	--

Rating	Symbol	Value	Unit
HALF BRIDGE IGBT			

Collector-Emitter Voltage

Table 1. ABSOLUTE MAXIMUM RATINGS (Note 1) T_J = 25°C unless otherwise noted

Rating	Symbol	Value	Unit
NEUTRAL POINT INVERSE DIODE			
Maximum Operating Junction Temperature	T _{JMAX}	150	۵°
THERMAL PROPERTIES			
Storage Temperature range	T _{stg}	-40 to 125	°C
INSULATION PROPERTIES			
Isolation test voltage, t = 1 sec, 60Hz	V _{is}	3000	V _{RMS}
Creepage distance		12.7	mm

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe

Operating parameters.

Table 2. RECOMMENDED OPERATING RANGES

Rating	Symbol	Min	Max	Unit
Module Operating Junction Temperature	TJ	-40		

Table 3. ELECTRICAL CHARACTERISTICS T_J = 25° C unless otherwise noted

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
NEUTRAL POINT FREEWHEEL DIODE CHARACTERISTICS						
Diode Reverse Leakage Current	V _R = 600 V	I _R	-	-	100	μΑ
Diode Forward Voltage	I _F = 120 A, T _J = 25°C	VF	-	1.24	1.5	V
	I _F = 120 A, T _J = 150°C		-	1.20	-	
Reverse Recovery Time	$T_J = 25^{\circ}C$	t _{rr}	-	50	-	ns
Reverse Recovery Charge	$V_{CE} = 350 \text{ V}, \text{ I}_{C} = 100 \text{ A}$ $V_{CE} = \pm 15 \text{ V}, \text{ R}_{C} = 4 \Omega$	Q _{rr}	-	1700	-	nC
Peak Reverse Recovery Current		I _{RRM}	-	59	-	А
Peak Rate of Fall of Recovery Current	7	di/dt	-	2500	-	A/μs
Reverse Recovery Energy	7	E _{rr}	-	380	-	μJ
Reverse Recovery Time	$T_J = 125^{\circ}C$	t _{rr}	-	77	-	ns
Reverse Recovery Charge	$V_{CE} = 350 \text{ V}, \text{ I}_{C} = 100 \text{ A}$ $V_{CE} = \pm 15 \text{ V}, \text{ R}_{C} = 4 \Omega$	Q _{rr}	-	3600	-	nC
Peak Reverse Recovery Current		I _{RRM}	-	77	-	А
Peak Rate of Fall of Recovery Current	7	di/dt	-	1900	-	A/μs
Reverse Recovery Energy	7	E _{rr}	-	780	-	μJ
Thermal Resistance – chip-to-heatsink	Thermal grease, Thickness < 100 $\mu\text{m},$ λ = 0.84 W/mK	R _{thJH}	-	0.48	-	°C/W
NEUTRAL POINT IGBT CHARACTERISTICS						
Collector–Emitter Cutoff Current	$V_{GE} = 0 V, V_{CE} = 600 V$	I _{CES}	-	-	300	-

www.onsemi.com 5

TYPICAL CHARACTERISTICS – Half Bridge IGBT and Neutral Point Diode

TYPICAL CHARACTERISTICS – Neutral Point IGBT and Half Bridge Diode

Figure 23. Typical Turn Off Time vs. IC

I_C, COLLECTOR CURRENT (A)

Figure 24. Typical Turn On Time vs. IC

TYPICAL CHARACTERISTICS – Half Bridge IGBT Protection Diode

	- + + + + + + + + + + + +	++++++

PIM56, 93x47 (SOLDER PIN) CASE 180AK ISSUE B

DATE 08 NOV 2017

, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its af

onsemi,