<u>onsemi.</u>

<u>Si/SiC Hybrid Module</u> – EliteSiC, Split T-Type NPC Inverter, Q2 Package

NXH200T120H3Q2F2SG, NXH200T120H3Q2F2STG

The NXH200T120H3Q2F2SG is a power module containing a split T-type neutral point clamped three-level inverter. The integrated field stop trench IGBTs and SiC Diodes provide lower conduction losses and switching losses, enabling designers to achieve high efficiency and superior reliability. NXH200T120H3Q2F2STG is Pre-applied Thermal Interface Material (TIM) module.

Features

- Split T-type Neutral Point Clamped Three-level Inverter Module
- 1200 V Ultra Field Stop IGBTs & 650 V FS4 IGBTs
- 650 V SiC Diodes
- Low Inductive Layout
- Solderable Pins
- Thermistor
- Pre-applied Thermal Interface Material (TIM)

Typical Applications

- Solar Inverters
- Uninterruptible Power Supplies

Figure 1. NXH200T120H3Q2F2SG Schematic Diagram

PIM56, 93x47 (SOLDER PIN) CASE 180AK

MARKING DIAGRAM

NXH200T120H3Q2F2SG,

NXH200T120H3Q2F2STG= Device Code							
YYWW	= Year and Work Week						
	Code						
А	= Assembly Site Code						
Т	= Test Side Code						
G	= Pb-Free Package						
	-						

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

Table 1. ABSOLUTE MAXIMUM RATINGS (Note 1) T_J = 25 $^\circ$

Table 1	ABSOLUTE	MAXIMUM	RATINGS	(Note 1) T _J	= 25°C unless	otherwise noted
---------	----------	---------	---------	-------------------------	---------------	-----------------

Rating	Symbol	Value	Unit

Table 3. ELECTRICAL CHARACTERISTICS $T_J = 25^{\circ}C$ unless otherwise noted

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
HALF BRIDGE IGBT CHARACTERIST	ICS					
Turn-on Delay Time	$T_J = 125^{\circ}C$	td(on)	-	276	-	ns
Rise Time	$V_{CE} = 350 \text{ V}, I_C = 170 \text{ A } V_{GE} = -5/+15 \text{ V},$ $R_G = 10 \Omega$	t _r	_	97	-	
Turn–off Delay Time		td(off)	-	997	-	
Fall Time]	t _f	-	99	Ι	
Turn-on Switching Loss per Pulse		Eon	-	5.4	-	mJ
Turn–off Switching Loss per Pulse		Eoff	-	7.9	-	
Input Capacitance	$V_{CE} = 25 V. V_{GE} = 0 V$	Cies	_	35615	-	pF
Output Capacitance		Coes	_	700	-	
Reverse Transfer Capacitance		Cres	-	530	-	
Total Gate Charge	V_{CE} = 600 V, I _C = 200 A, V _{GE} = 15 V	Qg	-	1706.4	-	nC
Thermal Resistance – chip-to-heatsink	Thermal grease, Thickness < 100 $\mu m,$ λ = 2.87 W/mK	RthJH	-	0.24	-	°C/W
Thermal Resistance – chip-to-case		RthJC	_	0.13	-	°C/W
NEUTRAL POINT FREEWHEEL DIODE	E CHARACTERISTICS					
Diode Reverse Leakage Current	V _R = 650 V	I _R	-	-	100	μΑ
Diode Forward Voltage	I _F = 100 A, T _J = 25°C	V _F	1.2	1.48	2.7	V
	I _F = 100 A, T _J = 175°C		-	1.90	-	
Reverse Recovery Time	$T_J = 25^{\circ}C$	trr	-	26.6	-	ns
Reverse Recovery Charge	$V_{CE} = 350 \text{ V}, \text{ I}_{C} = 170 \text{ A } \text{V}_{GE} = -5/+15 \text{ V},$ $R_{G} = 10 \Omega$	Qrr	_	308	-	nC
Peak Reverse Recovery Current		IRRM	-	16.8	-	А
Peak Rate of Fall of Recovery Current	1	di/dt	-	1659	-	A/μs
Reverse Recovery Energy	1	Err	-	34.5	-	μJ
Reverse Recovery Time	T _J = 125°C	trr	-	25.8	-	ns
Reverse Recovery Charge	$V_{CE} = 350 \text{ V}, I_C = 170 \text{ A}$ $V_{CE} = -5/+15 \text{ V}, R_C = 10 \Omega$	Qrr	-	294	-	nC
Peak Reverse Recovery Current		IRRM	-	18.0	-	А
Peak Rate of Fall of Recovery Current		di/dt	_	1672	_	A/μs
Reverse Recovery Energy	1	Err	_	35.2	_	μJ
Thermal Resistance – chip-to-heatsink	Thermal grease, Thickness < 100 μm,	RthJH	_	0.54	-	°C/W
Thermal Resistance – chip-to-case	λ = 2.87 W/mK	RthJC	_	0.43	_	°C/W
NEUTRAL POINT IGBT CHARACTERI	STICS					

Collector–Emitter Cutoff Current	V _{GE} = 0 V, V _{CE} = 650 V	ICES	-	-	300	μΑ
Collector–Emitter Saturation Voltage	$V_{GE} = 15 \text{ V}, \text{ I}_{C} = 150 \text{ A}, \text{ T}_{J} = 25^{\circ}\text{C}$	VCE(sat)	0.8	1.36	2.05	V
	V _{GE} = 15 V, I _C = 150 A, T _J = 175°C					

Table 3. ELECTRICAL CHARACTERISTICS $T_J = 25^{\circ}C$ unless otherwise noted

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit	
NEUTRAL POINT IGBT CHARACTERISTICS							
Turn–on Delay Time	$T_J = 25^{\circ}C$	td(on)	-	94	-	ns	
Rise Time	$V_{CE} = 350 \text{ V}, \text{ I}_{C} = 170 \text{ A } \text{V}_{GE} = -5/+15 \text{ V},$ $R_{G} = 10 \Omega$	t _r	-	45	-		
Turn–off Delay Time		td(off)	-	224	-		
Fall Time]	t _f	-	22	—		
Turn-on Switching Loss per Pulse		Eon	-	3.1	-	mJ	
Turn off Switching Loss per Pulse		Eoff	-	2.4	-		
Turn–on Delay Time	T _J = 125°C	td(on)	-	92	_	ns	
Rise Time	V_{CE} = 350 V, I_{C} = 170 A V_{GE} = –5/+15 V, R_{G} = 10 Ω	t _r	-	51	-		
Turn–off Delay Time		td(off)	-	244	-		
Fall Time]	t _f	-	19	—		
Turn-on Switching Loss per Pulse		Eon	-	4.7	-	mJ	
Turn off Switching Loss per Pulse		Eoff	-	3.0	-		
Input Capacitance	V _{CE} = 25 V, V _{GE} = 0 V, f = 100 kHz	Cies	-	9316	_	pF	
Output Capacitance		Coes	_	249	_		
Reverse Transfer Capacitance		Cres	_	34	_		
Total Gate Charge	V_{CE} = 480 V, I _C = 80 A, V _{GE} = 15 V	Qg	-	300.9	-	nC	
Thermal Resistance – chip-to-heatsink	Thermal grease, Thickness < 100 μ m,	RthJH	-	0.50	_	°C/W	
Thermal Resistance – chip-to-case	h = 2.87 VV/IIIK	RthJC	_	0.36	_	°C/W	
HALF BRIDGE FREEWHEEL DIODE C	HARACTERISTICS			-	-	-	

Diode Reverse Leakage Current	V _R = 1200 V	I _R	-	-	100	μΑ
	I _F =150 A, T _J = 25°C	V _F	1.6	2.71	3.6	V
	I _F = 150 A, T _J = 175°C		-	2.00	-	
	\frown	l l				

T _J = 25°C	
V _{CE} = 350 V, I _C = 170	A $V_{GE} = -5005$ V,
D 10.0	

Table 3. ELECTRICAL CHARACTERISTICS T_J = 25°C unless otherwise noted

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
HALF BRIDGE INVERSE DIODE CHARACTERISTICS						
Diode Forward Voltage	$I_{F} = 7 \text{ A}, T_{J} = 25^{\circ}\text{C}$	V _F	1.05	1.93	2.80	V
	I _F = 7 A, T _J = 175°C		_	1.29	-	
Thermal Resistance – chip-to-heatsink	Thermal grease, Thickness < 100 $\mu\text{m},$ λ = 2.87 W/mK	R _{thJH}	-	1.71	-	°C/W

TYPICAL CHARACTERISTICS -

TYPICAL CHARACTERISTICS - HALF BRIDGE IGBT AND NEUTRAL POINT DIODE

TYPICAL CHARACTERISTICS - HALF BRIDGE IGBT AND NEUTRAL POINT DIODE

TYPICAL CHARACTERISTICS – NEUTRAL POINT IGBT AND HALF BRIDGE DIODE

Figure 41. Typical Turn ON Switching Time vs. $\rm I_{C}$

Figure 43. Typical Turn ON Loss vs. ${\rm R}_{\rm G}$

Figure 40. Typical Turn OFF Loss vs. I_C

Figure 42. Typical Turn OFF Switching Time vs. IC

TYPICAL CHARACTERISTICS -

TYPICAL CHARACTERISTICS - NEUTRAL POINT INVERSE DIODE

Figure 58. Diode Forward Characteristic

Figure 59. Diode Transient Thermal Impedance

PIM56, 93x47 (SOLDER PIN) CASE 180AK ISSUE B

DATE 08 NOV 2017

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi