Q1 3-Phase TNPC Module

The NXH25T120L2Q1PG/PTG is a case power module containing a three channel T-type neutral-point clamped (TNPC) circuit. Each channel has a two 1200 V, 25 A IGBTs with inverse diodes and two 650 V, 20 A IGBTs with inverse diodes. The module contains an NTC thermistor.

Features

- Low Package Height
- Compact 82.5 mm x 37.4 mm x 12 mm Package
- Press-fit Pins
- Options with Pre-applied Thermal Interface Material (TIM) and Without Pre-applied TIM
- Thermistor

Typical Applications

- Solar Inverters
- UPS

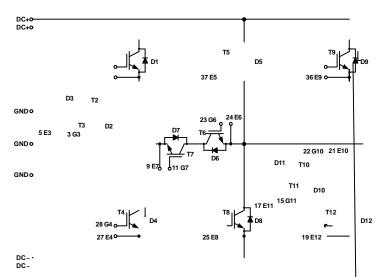
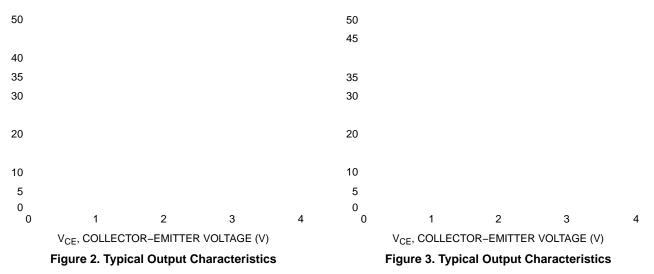


Figure 1. NXH25T120L2Q1PG/PTG Schematic Diagram

Table 1. MAXIMUM RATINGS (Note 1)

Rating	Symbol	Value	Unit
HALF BRIDGE IGBT			
Collector-Emitter Voltage	V _{CES}	1200	V
Gate-Emitter Voltage	V _{GE}	±20	V
Continuous Collector Current @ $T_c = 80^{\circ}C (T_J = 175^{\circ}C)$	Ι _C	25	А
Pulsed Collector Current ($T_J = 175^{\circ}C$)	I _{Cpulse}	75	А
Maximum Power Dissipation ($T_J = 175^{\circ}C$)	P _{tot}	81	W
Short Circuit Withstand Time @ V_{GE} = 15 V, V_{CE} = 600 V, T_J \leq 150°C	T _{sc}	5	μs
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature	T _{JMAX}	150	°C
NEUTRAL POINT IGBT			
Collector–Emitter Voltage	V _{CES}	650	V
Gate-Emitter Voltage	V _{GE}	±20	


Table 3. ELECTRICAL CHARACTERISTICS $T_J = 25^{\circ}C$ unless otherwise noted

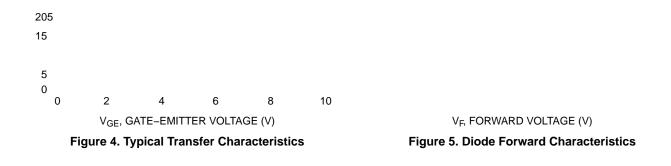
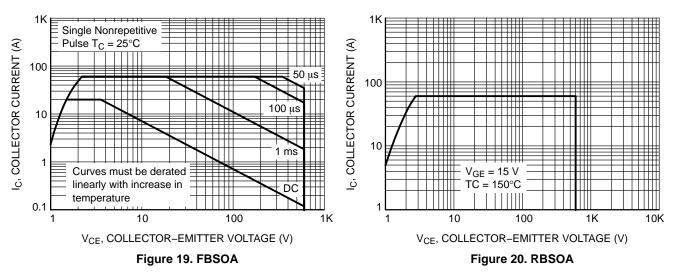

Collector-Emitter Cutoff Current	V _{GE} = 0 V, V _{CE} = 650 V	ICES	<u> </u>	Γ_	200	μA	1
			┢────	1.49		μA V	-
Collector–Emitter Saturation Voltage	$V_{GE} = 15 \text{ V}, I_C = 20 \text{ A}, T_J = 25^{\circ}\text{C}$	V _{CE(sat)}	<u> </u>	-	-	v .	
	V _{GE} = 15 V, I _C = 20 A, T _J = 125°C	'		1.61	-		
Gate-Emitter Threshold Voltage	$V_{GE} = V_{CE}$, $I_C = 1.65$ mA	$V_{\text{GE(TH)}}$	4.70	5.68	6.50	V	
Gate Leakage Current	V_{GE} = 20 V, V_{CE} = 0 V	I _{GES}	-	-	200	nA	
Turn-on Delay Time	$T_J = 25^{\circ}C$	t _{d(on)}	-	33	-	ns	
Rise Time	$V_{CE} = 350$ V, I _C = 15 A V _{GE} = ±15V, R _G = 15 Ω	tr	-	18	-		
Turn-off Delay Time	$VGE = \pm 15 v, NG = 15 22$	t _{d(off)}	-	126	-		
Fall Time	1	t _f	-	43	-		
Turn-on Switching Loss per Pulse	7	E _{on}	-	250	-	μJ	
Turn off Switching Loss per Pulse	1	E _{off}	-	180	-		
Turn-on Delay Time	T _J = 125°C	t _{d(on)}	-	31	-	ns	
Rise Time	V_{CE} = 350 V, I _C = 15 A V _{GE} = ±15 V, R _G = 15 Ω	t _r	1 15.3	364 r €9 r43	461 .7 64 .	.90707 15	364 rf⁄
Turn-off Delay Time	$V_{GE} = \pm 13 \text{ v}, \text{ KG} = 13 \text{ s}_2$	t _{d(off)}	-	138	-		
Fall Time	7	teoozr	T9 767 00	07094 7669 11	ef5(43 46	1.764 .907	07446

Table 3. ELECTRICAL CHARACTERISTICS T_J = 25°C unless otherwise noted

Parameter

TYPICAL CHARACTERISTICS – HALF BRIDGE IGBT AND DIODE



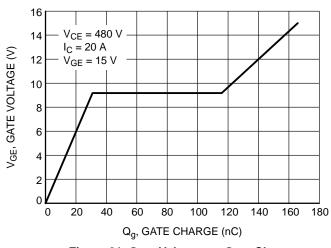
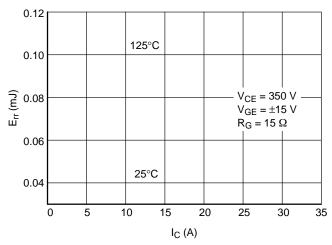
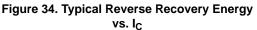
TYPICAL CHARACTERISTICS - HALF BRIDGE IGBT AND DIODE

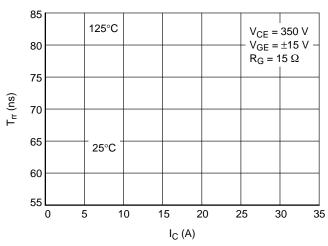
	-	Ħ	-	н		-		-				-				-	-	H		-		Ħ			=		
				Ħ								+	Ħ														
				Ħ																							
 _			+	11			-	++	11		_		+					+				+			_		+++-
				Ħ																							
				H																							
 _	-		+	H		-	-	++	₩		_	-	+				-	+				++	-		-	+	
	-		+	H		+	+		+			+	+					+							-	+	
-		+ +	-	Ħ							-	+				_									=	+	
				Ħ			-	+	Ħ			-	H														
				Ħ																							
			Т	П					П																		
-			+	Ħ		-			₩		-	+				_	-								=		
												+		_												+	
			+	Ħ					##			+				_										+	#
 _	_		+	\mathbb{H}			-	++	╫		_	+	+				_	+				++			_	+	+++
	+										-	1				_							-				
	+		+	H			+		Ħ		-	+	+												-	+	
			1	Ħ		1			T				\square								1						

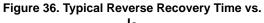
		-		-
-++	 		-	-
			-	-
			-	+
	 		-	-
				_
11	I		- 1	. 1
11	I		- 1	. 1
+		- + +	+	-
				T
		- + +		-
				_
				_
		_	_	-
				+
				Æ
++	 	-	-	++
-		-	-	+
				_
				. E
				-
11	I		- 1	. 1
++			+	-
11	I		- 1	. 1
11	I		- 1	. 1
11	I		- 1	. 1
11	I		- 1	. 1
11	I		- 1	. 1
1			1	_

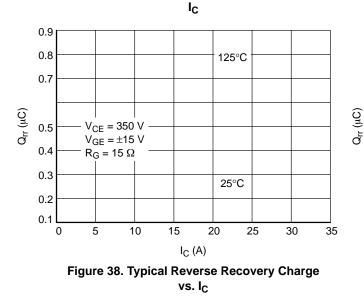
TYPICAL CHARACTERISTICS – NEUTRAL POINT IGBT AND DIODE

TYPICAL CHARACTERISTICS - NEUTRAL POINT IGBT AND DIODE


Figure 21. Gate Voltage vs. Gate Charge


TYPICAL CHARACTERISTICS - HALF BRIDGE IGBT COMUTATES NEUTRAL POINT DIODE


TYPICAL CHARACTERISTICS – HALF BRIDGE IGBT COMUTATES NEUTRAL POINT DIODE

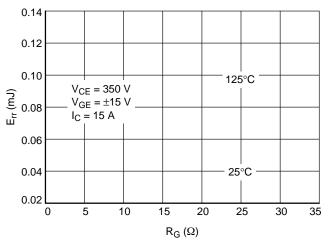


Figure 35. Typical Reverse Recovery Energy vs. R_G

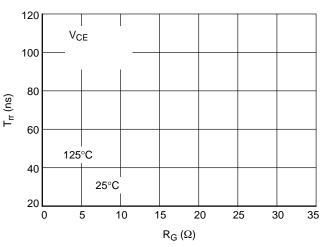
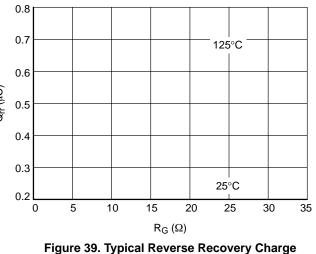



Figure 37. Typical Reverse Recovery Time vs. $$\rm R_{G}$$

vs. R_G

TYPICAL CHARACTERISTICS - HALF BRIDGE IGBT COMUTATES NEUTRAL POINT DIODE

I_C (A)

Figure 40. Typical Reverse Recovery Current vs. I_C

R_G Figure 41. Typical Reverse Recovery Current vs. R_G

TYPICAL CHARACTERISTICS -

TYPICAL CHARACTERISTICS - NEUTRAL POINT IGBT COMUTATES HALF BRIDGE DIODE

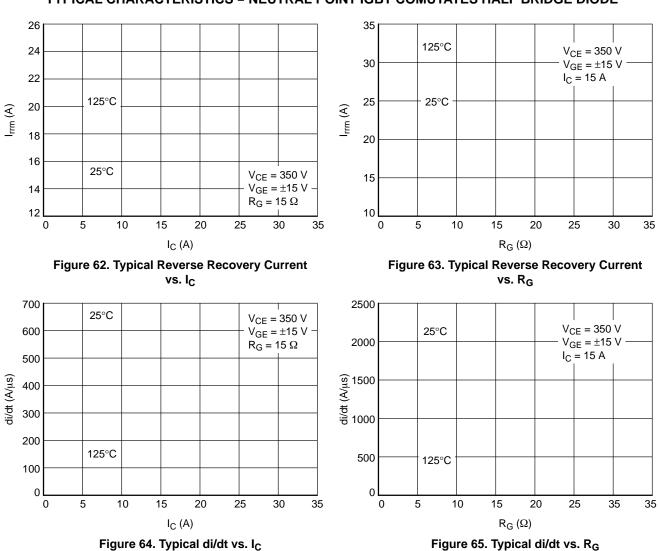

0.8		0.45	
0.7		0.40	
0.6		0.35	
0.5			
0.4		0.25	
		0.20	
0.2		0.15	
0.1			
		0.05	
0		0	
	I _C (A)		R _G (Ω)
	Figure 56. Typical Reverse Recovery Energy		Figure 57. Typical Reverse Recovery Energy
	vs. I _C		vs. R _G
600	vs. I _C	400	vs. R _G
	vs. I _C	400 350	vs. R _G
600 500	vs. I _C		vs. R _G
	vs. I _C	350	vs. R _G
500	vs. I _C	350 300	vs. R _G
500 400 300	vs. I _C	350 300 250 200	vs. R _G
500 400	vs. I _C	350 300 250	vs. R _G
500 400 300	vs. I _C	350 300 250 200 150	vs. R _G
500 400 300 200 100	vs. I _C	350 300 250 200 150	vs. R _G
500 400 300 200	vs. I _C	350 300 250 200 150	vs. R _G
500 400 300 200 100	vs. I _C I _C (A)	350 300 250 200 150	vs. R _G R _G (Ω)

Figure 58. Typical Reverse Recovery Time vs. $$\rm I_{C}$$

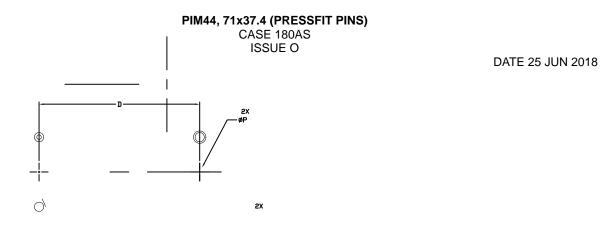

Figure 59. Typical Reverse Recovery Time vs. $$\rm R_{G}$$

Figure 60. Typical Reverse Recovery Charge vs. I_C

Figure 61. Typical Reverse Recovery Charge vs. R_G

TYPICAL CHARACTERISTICS – NEUTRAL POINT IGBT COMUTATES HALF BRIDGE DIODE

TERMINALS AND APRES.

.

PIM44, 71x37.4 CASE 180AS ISSUE O

DATE 15 JUN 2018

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi