# 

# Automotive Power MOSFET Module

# NXV08H350XT1

### Features

- 2 Phase MOSFET Module At Customer Side this Module Can Be Used as 1/2 Bridge MOSFET Module by Combining 2 Phase Out Power Terminals
- Electrically Isolated DBC Substrate for Low Rthjc
- Compact Design for Low Total Module Resistance
- Module Serialization for Full Traceability
- •

#### ORDERING INFORMATION

| Part Number  | Package   | Pb–Free and<br>RoHS Compliant | Operating Ambient<br>Temperature Range | Packing Method |  |
|--------------|-----------|-------------------------------|----------------------------------------|----------------|--|
| NXV08H350XT1 | APM17-MDC | yes                           | −40~125°C                              | Tube           |  |

# Pin Configuration



Figure 1. Pin Configuration

#### **Block Diagram**



Figure 2. Schematic

#### **Flammability Information**

All materials present in the power module meet UL flammability rating class 94V-0.

#### **Compliance to RoHS Directives**

The power module is 100% lead free and RoHS compliant 2000/53/C directive.

#### Solder

Solder used is a lead free SnAgCu alloy.

Base of the leads, at the interface with the package body should not be exposed to more than 200°C during mounting on the PCB, this to prevent the remelt of the solder joints.

| Symbol           | Parameter                              | Max. | Unit |
|------------------|----------------------------------------|------|------|
| VDS(Q1~Q4)       | Drain-to-Source Voltage                | 80   | V    |
| VGS(Q1~Q4)       | Gate-to-Source Voltage                 | ±20  | V    |
| EAS(Q1~Q4)       | Single Pulse Avalanche Energy (Note 1) | 1946 | mJ   |
| TJ               | Maximum Junction Temperature           | 175  | °C   |
| T <sub>STG</sub> | Storage Temperature                    | 125  | °C   |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Starting  $T_J = 25^{\circ}$ C, L = 0.47 mH,  $I_{AS} = 91$  A,  $V_{DD} = 72$  V during inductor charging and  $V_{DD} = 0$  V during time in avalanche.

ISOLATION VOLTAGE (Isolation voltage between the Base plate and to control pins or power terminals.)

| Test                                 | Test Condition | Test Time  | Min | Max | Unit |  |
|--------------------------------------|----------------|------------|-----|-----|------|--|
| Leakage @ Isolation Voltage (Hi-Pot) | VAC = 3 kV     | Time = 1 s |     |     |      |  |

# **TYPICAL CHARACTERISTICS**

| 10K   |         |                       |                |                  |         |        |     | 1000 |                   |           |          |         |         |       |     |
|-------|---------|-----------------------|----------------|------------------|---------|--------|-----|------|-------------------|-----------|----------|---------|---------|-------|-----|
|       |         |                       |                |                  |         |        |     | 900  |                   |           |          |         |         |       |     |
| 1K    |         |                       |                |                  |         |        |     | 800  |                   |           |          |         |         |       |     |
| 400   |         |                       |                |                  |         |        |     | 600  |                   |           |          |         |         |       |     |
| 100   |         |                       |                |                  |         |        |     |      |                   |           |          |         |         |       |     |
|       |         |                       |                |                  |         |        |     | 400  |                   |           |          |         |         |       |     |
| 10    |         |                       |                |                  |         |        |     | 300  |                   |           |          |         |         |       |     |
| 10    |         |                       |                |                  |         |        |     | 200  |                   |           |          |         |         |       |     |
| 1     |         |                       |                |                  |         |        |     | 0    |                   |           |          |         |         |       |     |
| 0.001 | 0.01    | 0.1                   | 1              | 10               | 100     | 1K     | 10K | 0    | 0.2               | 0.4       | 0.6      | 0.8     | 1.0     | 1.2   | 1.4 |
|       |         | t <sub>AV</sub> , TIM | E IN AVA       | ALANCH           | IE (ms) |        |     |      | V <sub>DS</sub> , | DRAIN-    | -TO-SO   | URCE V  | OLTAGE  | E (V) |     |
| F     | igure 3 | 3. Uncla              | amped<br>Capal | Induct<br>bility | ive Swi | tching | J   |      | Figu              | ire 4. Sa | aturatio | on Chai | acteris | tics  |     |

V<sub>GS</sub>, GATE-TO-SOURCE VOLTAGE (V) Figure 5. R<sub>DSON</sub> vs. Gate Voltage T<sub>J</sub>, JUNCTION TEMPERATURE (°C) Figure 6. R<sub>DSON</sub> vs. Temperature





T<sub>C</sub>, CASE TEMPERATURE (°C)



Figure 14. Flatness Measurement Position

#### **MECHANICAL CHARACTERISTICS AND RATINGS**

| Parameter       | Test Conditions                         | Min | Тур  | Max          | Units |
|-----------------|-----------------------------------------|-----|------|--------------|-------|
| Device Flatness | Refer to the package dimensions         | 0   | -    | 150          | um    |
| Mounting Torque | Mounting screw: M3, recommended 0.7 N•m | 0.4 | -    | 1.4 (Note 5) | N∙m   |
| Weight          |                                         | -   | 23.6 | _            | g     |

5. Max Torque rating can be different by the type of screw, such as the screw head diameter, use or without use of Washer. In case of special screw mounting method is applied, contact **onsemi** for the proper information of mounting condition.



1

APM17-MDC CASE MODHH ISSUE C

DATE 08 DEC 2021

09.

3. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR EXTR

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="http://www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi