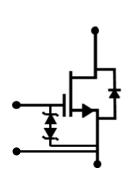
Is N w Part of

rnmr b ut ns mi™,p s visit urw bsit t www. ns mi.c m





Part Number	Package	Marking		
UF3C120080K4S	TO-247-4L	UF3C120080K4S		

Maximum Ratings

Parameter	Symbol	Test Conditions	Value	Units
Drain-source voltage	V_{DS}		1200	V
Gate-source voltage	V_{GS}	DC	-25 to +25	V
Continuous drain current ¹	I _D	$T_C = 25$ °C $T_C = 100$ °C	33 24	A A
Pulsed drain current ²	I _{DM}	$T_C = 25^{\circ}C$	77	А
Single pulsed avalanche energy ³	E _{AS}	L=15mH, I _{AS} =2.8A	58.5	mJ
Power dissipation	P _{tot}	$T_C = 25^{\circ}C$	254.2	W
Maximum junction temperature	$T_{J,max}$		175	°C
Operating and storage temperature	T_J,T_STG		-55 to 175	°C
Max. lead temperature for soldering, 1/8" from case for 5 seconds	T _L		250	°C

- 1. Limited by $T_{J,max}$
- 2. Pulse width $t_{\rm p}$ limited by $T_{\rm J,max}$
- 3. Starting $T_J = 25^{\circ}C$

Thermal Characteristics

Parameter	Symbol	Test Conditions		Value	_	Units
Parameter	Symbol	rest conditions	Min	Тур	Max	Ullits
Thermal resistance, junction-to-case	R_{q}			0.45	0.59	°C/W

Electrical Characteristics ($T_J = +25$ °Cunless otherwise specified)

Typical Performance - Static

BV_{DS}	Min 1200	Тур	Max	V
		10	75	
		50		
I_{GSS}		6	20	mA
		80	100	
		172		
$V_{G(th)}$ R_{G}	4	5 4.5	6	V W

Typical Performance - Reverse Diode

	Min	Тур	Max	
I_S			33	Α
$I_{S,puin}$				

Typical Performance - Dynamic

Parameter	Symbol	Test Conditions		Value		- Units
rai ai netei	Symbol Test Conditions	Min	Тур	Max	Offits	
Input capacitance	C_{iss}	$V_{DS} = 100 \text{V}, V_{GS} = 0 \text{V}$		1500		
Output capacitance	C_{oss}	f=100kHz		100		рF
Reverse transfer capacitance	C_{rss}	1 - 100KHZ		2.1		
Effective output capacitance, energy related	C _{oss(er)}	V_{DS} =0V to 800V, V_{GS} =0V		59		pF
Effective output capacitance, time related	$C_{oss(tr)}$	V_{DS} =0V to 800V, V_{GS} =0V		136		pF
C _{OSS} stored energy	E_{oss}	V_{DS} =800V, V_{GS} =0V		19		mJ
Total gate charge	Q_{G}	V _{DS} =800V, I _D =20A,		43		
Gate-drain charge	Q_{GD}	$V_{DS} = -5V \text{ to } 12V$		11		nC
Gate-source charge	Q_{GS}	VGS - 3V to 12V		19		
Turn-on delay time	$t_{d(on)}$	$V_{DS} = 800 V, I_{D} = 20 A,$		33		
Rise time	t _r	Gate Driver =-5V to +12V,		13		ns
Turn-off delay time	t _{d(off)}	Turn-on $R_{G.EXT}$ =8.5W,		43		115
Fall time	t _f	Turn-off R _{G,EXT} =20W		10		
Turn-on energy	E _{ON}	Inductive Load,		355		
Turn-off energy	E_{OFF}	FWD: same device with $V_{GS} = -5V$, $R_{G} = 10W$,		88		mJ
Total switching energy	E_TOTAL	$T_J=25^{\circ}C$		443		
Turn-on delay time	t _{d(on)}	V _{DS} =800V, I _D =20A,		29		
Rise time	t _r	Gate Driver =-5V to +12V,		11		ns
Turn-off delay time	$t_{d(off)}$	Turn-on $R_{G,EXT}$ =8.5W,		45		113
Fall time	t _f	Turn-off R _{G,EXT} =20W		10		
Turn-on energy	E _{ON}	Inductive Load,		306		
Turn-off energy	E _{OFF}	FWD: same device with $V_{GS} = -5V$, $R_{G} = 10W$,		82		mJ
Total switching energy	E _{TOTAL}	$T_{J}=150^{\circ}C$		388		

Datasheet: UF3C120080K4S 4

Typical Performance Diagrams

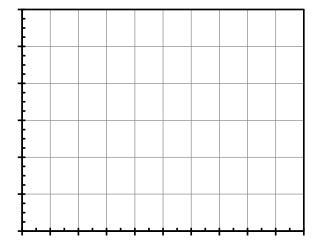


Figure 1. Typical output characteristics at $T_J = -55$ °C, tp < 250ms

Figure 2. Typical output characteristics at $T_J = 25$ °C, tp < 250ms

Figure 3. Typical output characteristics at $T_J = 175$ °C, tp < 250ms

Figure 4. Normalized on-resistance vs. temperature at V_{GS} = 12V and I_{D} = 20A

12V

Figure 5. Typical drain-source on-resistances at V_{GS} = Figure 6. Typical transfer characteristics at V_{DS}

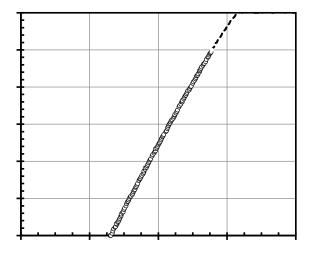


Figure 9. 3rd quadrant characteristics at $T_J = -55$ °C

Figure 10. 3rd quadrant characteristics at $T_J = 25^{\circ}C$

Figure 11. 3rd quadrant characteristics at $T_J = 175$ °C

Figure 12. Typical stored energy in C_{OSS} at $V_{GS} = 0V$

Figure 22. Reverse recovery charge Qrr vs. junction temperature

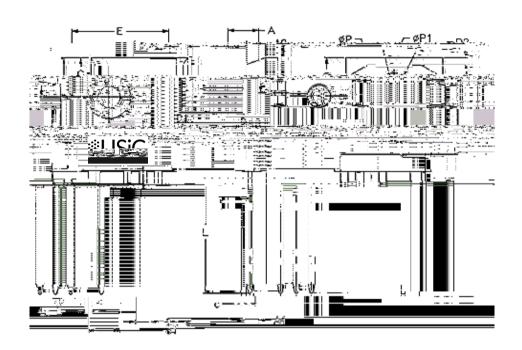
Applications Information

SiC cascodes are enhancement-mode power switches formed by a high-voltage SiC depletion-mode JFET and a low-voltage silicon MOSFET connected in series. The silicon MOSFET serves as the control unit while the SiC JFET provides high voltage blocking in the off state. This combination of devices in a single package provides compatibility with standard gate drivers and offers superior performance in terms of low on-resistance ($R_{DS(on)}$), output capacitance (C_{oss}), gate charge (Q_G), and reverse recovery charge (Q_{rr}) leading to low conduction and switching losses. The SiC cascodes also provide excellent reverse conduction capability eliminating the need for an external anti-parallel diode.

Like other high performance power switches, proper PCB layout design to minimize circuit parasitics is strongly recommended due to the high dv/dt and di/dt rates. An external gate resistor is recommended when the cascode is working in the diode mode in order to achieve the optimum reverse recovery performance. For more information on cascode operation, see www.unitedsic.com.

Disclaimer

United Sili(e)-


Information on all products and contained herein is intended for description only. No license, express or implied, to any intellectual property rights is granted within this document.

United Silicon Carbide, Inc. assumes no liability whatsoever relating to the choice, selection or use of the United Silicon Carbide, Inc. products and services described herein.

TO-247-4L PACKAGE OUTLINE, PART MARKING AND TUBE SPECIFICATIONS

PACKAGE OUTLINE

DIM	INCHES		MILLIN	METERS
	MIN	MAX	MIN	MAX
_				
P P1				
ГІ				

TO-247-4L PACKAGE OUTLINE, PART MARKING AND TUBE SPECIFICATIONS

PACKING TYPE

