Is N w Part of rnmr b ut ns mi[™],p s visit urw bsit t <u>www. ns mi.c m</u>) 8Nh", Ž2CM2I Q"£; £; #### Description The UF4SC120023K4S is a 1200V, 23mWG4 SiC FET. It is based on a unique 'cascode' circuit configuration, in which a normally-on SiC JFET is co-packaged with a Si MOSFET to produce a normally-off SiC FET device. The device's standard gate-drive characteristics allows for a true "drop-in replacement" to Si IGBTs, Si FETs, SiC MOSFETs or Si superjunction devices. Available in the TO-247-4L package, this device exhibits ultra-low gate charge and exceptional reverse recovery characteristics, making it ideal for switching inductive loads and any application requiring standard gate drive. #### **Features** On-resistance R_{DS(on)}: 23mW(typ) Operating temperature: 175°C (max) Excellent reverse recovery: Q_{rr} = 341nC Low body diode V_{FSD} : 1.2V Low gate charge: $Q_G = 37.8nC$ Threshold voltage V_{G(th)}: 4.8V (typ) allowing 0 to 15V drive Low intrinsic capacitance ESD protected: HBM class 2 and CDM class C3 TO-247-4L package for faster switching, clean gate waveforms # Part Number Package Marking UF4SC120023K4S TO-247-4L UF4SC120023K4S #### Typical applications EV charging PV inverters Switch mode power supplies Power factor correction modules Motor drives Induction heating ### Maximum Ratings | | Parameter | Symbol | Test Conditions | Value | Units | |--------------------|-----------|-----------------|-----------------|------------|-------| | Drain-source volta | age | V_{DS} | | 1200 | V | | | | V_{GS} | DC | -20 to +20 | V | | | | v GS | AC (f > 1Hz) | -25 to +25 | V | | | | I_{D} | | 53 | Α | | | | I_{DM} | | 204 | Α | | | | E_{AS} | | 126 | mJ | | | | dv/dt | | 150 | V/ns | | | | P_{tot} | | 385 | W | | | | $T_{J,max}$ | | 175 | °C | | | | T_{J},T_{STG} | | -55 to 175 | °C | | | | T_L | | 250 | °C | - 1. Limited by bondwires - 2. Pulse width t_p limited by $T_{J,max}$ - 3. Starting $T_J = 25^{\circ}C$ #### Thermal Characteristics | Parameter | Symbol Test Conditions | Tost Conditions | Value | | | Units | |--------------------------------------|------------------------|-----------------|-------|-----|------|--------| | | | rest Conditions | Min | Тур | Max | UTITES | | Thermal resistance, junction-to-case | R_{a} | | | 0.3 | 0.39 | °C/W | ## Electrical Characteristics ($T_J = +25$ °C unless otherwise specified) ## Typical Performance - Static | Min
1200 | Тур | Ma : Min | V | |-------------|-----|-----------------|-----------| | | 2 | 60 | | | | 20 | | | | | | 1200 | 1200 2 60 | #### Typical Performance Diagrams Figure 1. Typical output characteristics at $T_J = -55$ °C, Figure 2. Typical output characteristics at $T_J = 25$ °C, Figure 3. Typical output characteristics at T_J = 175°C, tp < 250ms Figure 4. Normalized on-resistance vs. temperature at V_{GS} = 12V and I_{D} = 40A Figure 7. Threshold voltage vs. junction temperature at $V_{DS} = 800 \text{ V}$ $V_{DS} = 5 \text{ V}$ and $V_{DS} = 10 \text{ mA}$ eristics at T_J = -55°C Figure 9. 3rd quadrant ch Figure 10. 3rd quadrant characteristics at T_J = 25°C FET-Jet Calculato Figure 18. Revei rr vs. juncti temperature at 30 P00 25 Snubber R_S Energy (mJ) 20 Etot - Eon 15 ·Eoff 10 5 0 Figure 17. Safe operation area at T_C = 25°C, D = 0, Parameter t_p 0 Figure 19. Clamped inductive switching energy vs. drain current at V_{DS} = 800V and T_J = $25\,^{\circ}C$ Figure 20. RC snubber energy loss vs. drain current at V_{DS} = 800V and T_J = 25°C 30 Drain Current, I_D (A) 40 0 10 20 60 70 50 Figure 21. Clamped inductive switching energies vs. $R_{G,EXT}$ at V_{DS} = 800V, I_D =40A, and T_J = 25 $^{\circ}C$ Figure 22. RC snubber energy loss vs. $R_{G,EXT}$ at V_{DS} = 800V, I_D =40A, and T_J = 25°C Figure 23. Clamped inductive switching energies vs. snubber capacitance C_S at V_{DS} = 800V, I_D = 40A, and T_J = 25°C Figure 24. RC snubber energy losses vs. snubber capacitance C_S at V_{DS} = 800V, I_D =40A, and T_J = 25°C Figure 25. Clamped inductive switching energy vs. junction temperature at V ### Applications Information Since Figs = 3.08 + 3 Important notice # TO-247-4L PACKAGE OUTLINE, PART MARKING AND TUBE SPECIFICATIONS # **PACKAGE OUTLINE** | DIM | | | | | |-----|-----|-----|-----|-----| | | MIN | MAX | MIN | MAX | # TO-247-4L PACKAGE OUTLINE, PART MARKING AND TUBE SPECIFICATIONS **PACKING TYPE** | onsemi | onsemi | onsemi
 | onsemi | onsemi
onsemi | onsemi | |--------|--------|------------|--------|------------------|--------| | | | | | | |