Is N w Part of

rnmr b ut ns mi[™],p s visit urw bsit t <u>www. ns mi.c m</u>

) 8Nh", Ž2CM2I Q"£; £;

Description

The UF4SC120023K4S is a 1200V, 23mWG4 SiC FET. It is based on a unique 'cascode' circuit configuration, in which a normally-on SiC JFET is co-packaged with a Si MOSFET to produce a normally-off SiC FET device. The device's standard gate-drive characteristics allows for a true "drop-in replacement" to Si IGBTs, Si FETs, SiC MOSFETs or Si superjunction devices. Available in the TO-247-4L package, this device exhibits ultra-low gate charge and exceptional reverse recovery characteristics, making it ideal for switching inductive loads and any application requiring standard gate drive.

Features

On-resistance R_{DS(on)}: 23mW(typ)

Operating temperature: 175°C (max)

Excellent reverse recovery: Q_{rr} = 341nC

Low body diode V_{FSD} : 1.2V

Low gate charge: $Q_G = 37.8nC$

Threshold voltage V_{G(th)}: 4.8V (typ) allowing 0 to 15V drive

Low intrinsic capacitance

ESD protected: HBM class 2 and CDM class C3

TO-247-4L package for faster switching, clean gate waveforms

Part Number Package Marking UF4SC120023K4S TO-247-4L UF4SC120023K4S

Typical applications

EV charging

PV inverters

Switch mode power supplies

Power factor correction modules

Motor drives

Induction heating

Maximum Ratings

	Parameter	Symbol	Test Conditions	Value	Units
Drain-source volta	age	V_{DS}		1200	V
		V_{GS}	DC	-20 to +20	V
		v GS	AC (f > 1Hz)	-25 to +25	V
		I_{D}		53	Α
		I_{DM}		204	Α
		E_{AS}		126	mJ
		dv/dt		150	V/ns
		P_{tot}		385	W
		$T_{J,max}$		175	°C
		T_{J},T_{STG}		-55 to 175	°C
		T_L		250	°C

- 1. Limited by bondwires
- 2. Pulse width t_p limited by $T_{J,max}$
- 3. Starting $T_J = 25^{\circ}C$

Thermal Characteristics

Parameter	Symbol Test Conditions	Tost Conditions	Value			Units
		rest Conditions	Min	Тур	Max	UTITES
Thermal resistance, junction-to-case	R_{a}			0.3	0.39	°C/W

Electrical Characteristics ($T_J = +25$ °C unless otherwise specified)

Typical Performance - Static

Min 1200	Тур	Ma : Min	V
	2	60	
	20		
		1200	1200 2 60

Typical Performance Diagrams

Figure 1. Typical output characteristics at $T_J = -55$ °C,

Figure 2. Typical output characteristics at $T_J = 25$ °C,

Figure 3. Typical output characteristics at T_J = 175°C, tp < 250ms

Figure 4. Normalized on-resistance vs. temperature at V_{GS} = 12V and I_{D} = 40A

Figure 7. Threshold voltage vs. junction temperature at $V_{DS} = 800 \text{ V}$ $V_{DS} = 5 \text{ V}$ and $V_{DS} = 10 \text{ mA}$

eristics at T_J = -55°C Figure 9. 3rd quadrant ch

Figure 10. 3rd quadrant characteristics at T_J = 25°C

FET-Jet Calculato Figure 18. Revei rr vs. juncti temperature at 30 P00 25 Snubber R_S Energy (mJ) 20 Etot - Eon 15 ·Eoff 10 5 0

Figure 17. Safe operation area at T_C = 25°C, D = 0, Parameter t_p

0

Figure 19. Clamped inductive switching energy vs. drain current at V_{DS} = 800V and T_J = $25\,^{\circ}C$

Figure 20. RC snubber energy loss vs. drain current at V_{DS} = 800V and T_J = 25°C

30

Drain Current, I_D (A)

40

0

10

20

60

70

50

Figure 21. Clamped inductive switching energies vs. $R_{G,EXT}$ at V_{DS} = 800V, I_D =40A, and T_J = 25 $^{\circ}C$

Figure 22. RC snubber energy loss vs. $R_{G,EXT}$ at V_{DS} = 800V, I_D =40A, and T_J = 25°C

Figure 23. Clamped inductive switching energies vs. snubber capacitance C_S at V_{DS} = 800V, I_D = 40A, and T_J = 25°C

Figure 24. RC snubber energy losses vs. snubber capacitance C_S at V_{DS} = 800V, I_D =40A, and T_J = 25°C

Figure 25. Clamped inductive switching energy vs. junction temperature at V

Applications Information

Since Figs = 3.08 + 3

Important notice

TO-247-4L PACKAGE OUTLINE, PART MARKING AND TUBE SPECIFICATIONS

PACKAGE OUTLINE

DIM				
	MIN	MAX	MIN	MAX

TO-247-4L PACKAGE OUTLINE, PART MARKING AND TUBE SPECIFICATIONS

PACKING TYPE

onsemi	onsemi	onsemi 	onsemi	onsemi onsemi	onsemi