
Is N w Part of

rnmr b ut ns mi™, p s visit urw bsit t www. ns mi.c m

DATASHEET

UJ3C065030B3

TAB **D (2)**

S (3)

Part Number	Package	Marking
UJ3C065030B3	D ² PAK-3L	UJ3C065030B3

Typical Performance - Dynamic

	Min	Тур	Max	
$egin{array}{c} C_{ ext{iss}} \ C_{ ext{oss}} \ \end{array}$		1500		
C _{oss}		320		
C_{rss}		2.3		
$C_{oss(er)}$		230		pF
$C_{oss(tr)}$		520		pF
E _{oss}		18.5		Ŋ

Typical Performance Diagrams

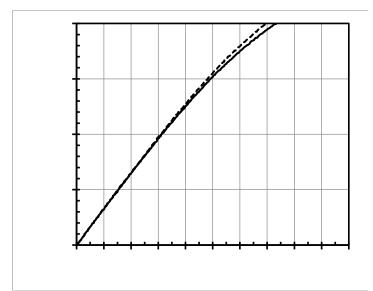


Figure 1. Typical output characteristics at $T_J = -55$ °C, tp < 250 Rs

Figure 2. Typical output characteristics at $T_J = 25$ °C, tp < 250 Rs

Figure 10. 3rd quadrant characteristics at $T_J = 25^{\circ}C$

Figure 11. 3rd quadrant characteristics at $T_J = 175$ °C Figure 12. Typical stored energy in G_{SS}

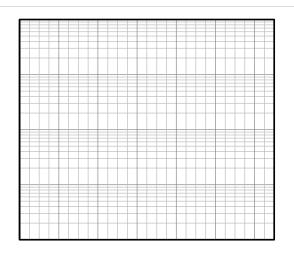


Figure 13. Typical capacitances at f = 100kHz and $\frac{1}{2}$ = 0V

Figure 14. DC drain current derating

Figure 17. Safe operation area at $\overline{t} = 25^{\circ}\text{C}$, D = 0, Parameter t_p

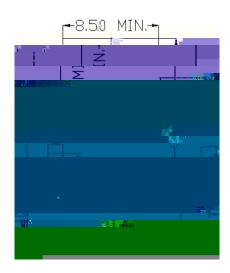
Figure 18. Clamped inductive switching energy $\,$ vs. drain current at $T_J = 150^{\circ}C$

Figure 19. Clamped inductive switching turn-on energy vs. R_{S,EXT_ON}

Figure 20. Clamped inductive switching turn-off energy vs. $R_{\!S,\text{EXT_OFF}}$

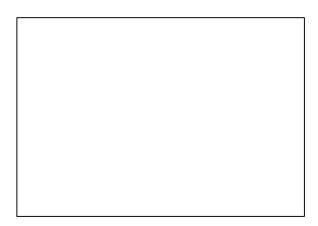
Applications Information

SiC FETs are enhancement-mode power switches formed by a high-voltage SiC depletion-mode JFET and a low-voltage silicon MOSFET connected in series. The silicon MOSFET serves as the control unit while the SiC JFET provides high voltage blocking in the off state. This combination of devices in a single package provides compatibility with standard gate drivers and offers superior performance in terms of low on-resistance ($R_{DS(on)}$), output capacitance ($R_{DS(on)}$), gate charge ($R_{DS(on)}$), and reverse recovery charge ($R_{DS(on)}$)



Important notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein



Notes: 1. PACKAGE STATE OF THE STATE OF THE

