

/ rnm r b ut ns mi[™], p s visit ur w bsit t www. ns mi.c m

Maximum Ratings

Parameter	Symbol	Test Conditions	Value	Units
Drain-source voltage	V_{DS}		650	V
Gate-source voltage	V_{GS}	DC	-25 to +25	V
Continuous drain current ¹	I _D	$T_{\rm C} = 25^{\circ}{\rm C}$	85	A
	I	$1_{\rm C} = 100 {\rm C}$	62	A
MEMIC ETQ[192.31 9.05.17 55.58430.11 648.7 10	IDM Eas	L=15mH, I _{AS} =4A	230	A m.J
Power dissipation	P _{tot}	$T_{\rm C} = 25^{\circ}{\rm C}$	441	W
Maximum junction temperature	T _{J,max}		175	°C
Operating and storage temperature	T _J , T _{STG}		-55 to 175	°C
Max. lead temperature for soldering, %#, Zfca WlgY Zcf) gYWcbXg	TL		250	°C

1. Limited by $T_{\text{J,max}}$

2. Pulse width t_p limited by $T_{J,max}$

3. Starting $T_J = 25^{\circ}C$

Thermal Characteristics

Parameter	Symbol	Test Conditions	Value			Lipito
			Min	Тур	Max	UTIIIS
Thermal resistance, junction-to-case	R _q			0.26	0.34	°C/W

Typical Performance - Dynamic

Parameter	Symbol	Test Canditions	Value			Linite
		Test Conditions	Min	Тур	Max	Units
Input capacitance	C _{iss}			1500		pF
Output capacitance	C _{oss}	$v_{DS} = 100V, v_{GS} = 0V$ f = 100kHz		320		
Reverse transfer capacitance	C _{rss}	T-TUOKITZ		2.3		
Effective output capacitance, energy related	C _{oss(er)}	V _{DS} =0V to 400V, V _{GS} =0V		230		pF
Effective output capacitance, time related	C _{oss(tr)}	V _{DS} =0V to 400V, V _{GS} =0V		520		pF
C _{OSS} stored energy	E _{oss}	V _{DS} =400V, V _{GS} =0V		18.5		mJ
Total gate charge	Q _G	V_{DS} =400V, I_{D} =50A, V_{GS} = -5V to15V		51		nC
Gate-drain charge	Q _{GD}			11		
Gate-source charge	Q_{GS}			19		
Turn-on delay time	t _{d(on)}			36		
Rise time	t _r	V_{DS} =400V, I_D =50A, Gate Driver =-5V to +15V, Turn-on $R_{G,EXT}$ =1W, Turn-off $R_{G,EXT}$ =20W Inductive Load, FWD: UJ3D065030TS, T _J =150°C		22		- ns
Turn-off delay time	t _{d(off)}			56		
Fall time	t _f			15		
Turn-on energy	E _{ON}			472		- mJ
Turn-off energy	E _{OFF}			257		
Total switching energy	E _{TOTAL}			729		

Typical Performance Diagrams

Figure 1. Typical output characteristics at $T_J = -55^{\circ}C$, tp < 250ms

Figure 2. Typical output characteristics at $T_{\rm J}$ = 25°C, tp < 250ms

Figure 3. Typical output characteristics at $T_J = 175$ °C, tp < 250ms

Figure 4. Normalized on-resistance vs. temperature at V_{GS} = 12V and I_{D} = 50A

Figure 5. Typical drain-source on-resistances at V_{GS} = Figure 6. Typical transfer characteristics at V_{DS} = 5V 12V

Figure 17. Safe operation area at $T_C = 25^{\circ}C$, D = 0, Parameter t_p

Figure 18. Clamped inductive switching energy	VS.
drain current at T _J = 150°C	

Figure 19. Clamped inductive switching turn-on energy vs. $R_{G,\text{EXT_ON}}$

Figure 20. Clamped inductive switching turn-off energy vs. $R_{G,\text{EXT}_\text{OFF}}$

Figure 21. Clamped inductive switching energy vs. junction temperature at V_{DS} =400V and I_{D} = 50A

Applications Information

SiC FETs are enhancement-mode power switches formed by a highvoltage SiC depletion-mode JFET and a low-voltage silicon MOSFET connected in series. The silicon MOSFET serves as the control unit while the SiC JFET provides high voltage blocking in the off state. This combination of devices in a single package provides compatibility with standard gate drivers and offers superior performance in terms of low on-resistance (R_{DS(on)}), output capacitance (C_{oss}), gate charge (Q_G), and reverse recovery charge (Qrr) leading to low conduction and switching losses. The SiC FETs also provide excellent reverse conduction capability eliminating the need for an external anti-parallel diode.

Information on all products and contained herein is intended for description only. No license, express or implied, to any intellectual property rights is granted within this document.

Disclaimer

UnitedSiC reserves the right to change or modify any of the products and their inherent physical and technical specifications without prior notice. UnitedSiC assumes no responsibility or liability for any errors or inaccuracies within.

TO-220-3L PACKAGE OUTLINE, PART MARKING AND TUBE SPECIFICATIONS

PART MARKING

PACKING TYPE

ANTI-STATIC TUBE

QUANTITY /TUBE : 50 UNITS

DISCLAIMER

United Silicon Carbide, Inc. reserves the right to change or modify any of the products and their inherent physical and technical specifications without prior notice. United Silicon Carbide, Inc. assumes no responsibility or liability for any errors or inaccuracies within.

Information on all products and contained herein is intended for description only. No license, express or

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi