

/ rnm r b ut ns mi[™], p s visit ur w bsit t www. ns mi.c m

Silicon Carbide (SiC) Cascode JFET -EliteSiC, Power N-Channel, TO-220-3L, 650 V, 80 mohm

DATASHEET

UJ3C065080T3S

Part Number	Package	Marking
UJ3C065080T3S	TO-220-3L	UJ3C065080T3S

Rev. E, Janauary 2025

Description

H\]gG]7 : 9HXYj]W]gVUgYXcbUi b]ei Y WgWcXY WfW]h configuration, in which a normally-on SiC JFET is co-packaged with a Si A C G: 9Hhc dfcXi W Ubcfa U`mcZZG]7 : 9HXYj]W "'H\Y XYj]W g ghUbXUfX [UhY!Xf]j Y WUfUWfY]gh]WgU`ck gZcfUhfi Y`Xfcd!]b fYd`UWa Ybh hc G] = 6HgžG]: 9HgžG]7 A C G: 9Hgcf G]gi dYf t bWf]cb devices. Available in the TO-220-3L package, this device exhibits ultralow gate charge and exceptional reverse recovery characteristics, making it ideal for switching inductive loads , and any application requiring standard gate drive.

Fe Tf-20 (e Tf9 (e917 (co)-3 -0.045ET12 ouchUp_TextEd0 |

6

Maximum Ratings

Parameter	Symbol	Test Conditions	Value	Units
Drain-source voltage	V_{DS}		650	V
Gate-source voltage	V_{GS}	DC	-25 to +25	V
Continuous drain current ¹	I	$T_{\rm C} = 25 ^{\circ}{\rm C}$	31	А
	ID	$T_{\rm C} = 100^{\circ}{\rm C}$	23	А
Pulsed drain current ²	I _{DM}	$T_{\rm C} = 25 ^{\circ}{\rm C}$	65	А
Single pulsed avalanche energy ³	E _{AS}	L=15mH, I _{AS} =2.1A	33	mJ
Power dissipation	P _{tot}	$T_{\rm C} = 25 ^{\circ}{\rm C}$	190	W
Maximum junction temperature	T _{J,max}		175	°C
Operating and storage temperature	T _J , T _{STG}		-55 to 175	°C
Max. lead temperature for soldering, %#, Zfca WlgY Zcf) gYWtbXg	TL		250	°C

1. Limited by $T_{\text{J,max}}$

2. Pulse width t_p limited by $T_{J,max}$

3. Starting $T_J = 25^{\circ}C$

Thermal Characteristics

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
	R _q			0.61	0.79	°C/W

Typical Performance - Dynamic

Min Typ Max

 C_{iss}

Typical Performance Diagrams

Figure 1. Typical output characteristics at $T_J = -55$ °C, tp < 250ms

Figure 2. Typical output characteristics at $T_{\rm J}$ = 25°C, tp < 250ms

Figure 3. Typical output characteristics at $T_J = 175$ °C, tp < 250ms

Figure 4. Normalized on-resistance vs. temperature at V_{GS} = 12V and I_{D} = 20A

Contr

Figure 13. Typical capacitances at f = 100kHz and V_{GS} Figure 14. DC drain current derating = 0V

TO-220-3L PACKAGE OUTLINE, PART MARKING AND TUBE SPECIFICATIONS

PART MARKING

PACKING TYPE

ANTI-STATIC TUBE

QUANTITY /TUBE : 50 UNITS

DISCLAIMER

United Silicon Carbide, Inc. reserves the right to change or modify any of the products and their inherent physical and technical specifications without prior notice. United Silicon Carbide, Inc. assumes no responsibility or liability for any errors or inaccuracies within.

Information on all products and contained herein is intended for description only. No license, express or

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or incruit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi